The existence of a link between the gut microbiome and autism spectrum disorder (ASD) is well established in mice, but in human populations efforts to identify microbial biomarkers have been limited due to problems stratifying participants within the broad phenotype of ASD and a lack of appropriately matched controls. To overcome these limitations and investigate the relationship between ASD and the gut microbiome, we ran a crowdsourced study of families 2-7 year old sibling pairs, where one child of the pair had a diagnosis of ASD and the other child did not. Methods: Parents of age-matched sibling pairs electronically consented and completed study procedures via a secure web portal (microbiome.stanford.edu). Parents collected stool samples from each child, responded to behavioral questionnaires about the ASD child's typical behavior, and whenever possible provided a home video of their ASD child's natural social behavior. We performed DNA extraction and 16S rRNA amplicon sequencing on 117 stool samples (60 ASD and 57 NT) that met all study design eligibility criteria,. Using DADA2, Exact Sequence Variants (ESVs) were identified as taxonomic units, and three statistical tests were performed on ESV abundance counts: (1) permutation test to determine differences between sibling pairs, (2) differential abundance test using a zero-inflated gaussian mixture model to account for the sparse abundance matrix, and (3) differential abundance test after modeling under a negative binomial distribution. The potential functional gene abundance for each sample was also inferred from the 16S rRNA data, providing KEGG Ortholog (KO), which were analyzed for differential abundance. Results: In total, 21 ESVs had significantly differentially proportions in stool of children with ASD and their neurotypical siblings. Of these 21 ESVs, 11 were enriched in neurotypical children and ten were enriched in children with ASD. ESVs enriched in the ASD cohort were predominantly associated with Ruminococcaceae and Bacteroidaceae; while those enriched in controls were more diverse including taxa associated with Bifidobacterium, Porphyromonas, Slackia, Desulfovibrio, Acinetobacter johnsonii, and Lachnospiraceae. Exact Variant Analysis suggested that Lachnospiraceae was specific to the control cohort, while Ruminococcaceae, Tissierellaceae and Bacteroidaceae were significantly enriched in children with ASD. Metabolic gene predictions determined that while both cohorts harbor the butyrogenic pathway, the ASD cohort was more likely to use the 4-aminobutanoate (4Ab) pathway, while the control cohort was more likely to use the pyruvate pathway. The 4Ab pathway releases harmful by-products like ammonia and can shunt glutamate, affecting its availability as an excitatory neurotransmitter. Finally, we observed differences in the carbohydrate uptake capabilities of various ESVs identified between the two cohorts.