AA
Amit Amin
Author with expertise in Immunobiology of Dendritic Cells
Columbia University Irving Medical Center, Columbia University, University of Cambridge
+ 7 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
15
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
36

The CD58:CD2 axis is co-regulated with PD-L1 via CMTM6 and governs anti-tumor immunity

Patricia Ho et al.Oct 24, 2023
+23
M
J
P
ABSTRACT The cell autonomous balance of immune-inhibitory and -stimulatory signals is a critical yet poorly understood process in cancer immune evasion. Using patient-derived co-culture models and humanized mouse models, we show that an intact CD58:CD2 interaction is necessary for anti-tumor immunity. Defects in this axis lead to multi-faceted immune evasion through impaired CD2-dependent T cell polyfunctionality, T cell exclusion, impaired intra-tumoral proliferation, and concurrent protein stabilization of PD-L1. We performed genome-scale CRISPR-Cas9 and CD58 coimmunoprecipitation mass spectrometry screens identifying CMTM6 as a key stabilizer of CD58, and show that CMTM6 is required for concurrent upregulation of PD-L1 in CD58 loss. Single-cell RNA-seq analysis of patient melanoma samples demonstrates that most TILs lack expression of primary costimulatory signals required for response to PD-1 blockade (e.g. CD28 ), but maintain strong CD2 expression, thus providing an opportunity to mobilize a so far therapeutically untapped pool of TILs for anti-tumor immunity. We identify two potential therapeutic avenues, including rescued activation of human CD2 -expressing TILs using recombinant CD58 protein, and targeted disruption of PD-L1/CMTM6 interactions. Our work identifies an underappreciated yet critical axis at the nexus of cancer immunity and evasion, uncovers a fundamental mechanism of co-inhibitory and -stimulatory signal balancing, and provides new approaches to improving cancer immunotherapies.
36
Citation6
0
Save
408

A single-nucleus and spatial transcriptomic atlas of the COVID-19 liver reveals topological, functional, and regenerative organ disruption in patients

Yered Pita-Juárez et al.Oct 24, 2023
+60
N
D
Y
The molecular underpinnings of organ dysfunction in acute COVID-19 and its potential long-term sequelae are under intense investigation. To shed light on these in the context of liver function, we performed single-nucleus RNA-seq and spatial transcriptomic profiling of livers from 17 COVID-19 decedents. We identified hepatocytes positive for SARS-CoV-2 RNA with an expression phenotype resembling infected lung epithelial cells. Integrated analysis and comparisons with healthy controls revealed extensive changes in the cellular composition and expression states in COVID-19 liver, reflecting hepatocellular injury, ductular reaction, pathologic vascular expansion, and fibrogenesis. We also observed Kupffer cell proliferation and erythrocyte progenitors for the first time in a human liver single-cell atlas, resembling similar responses in liver injury in mice and in sepsis, respectively. Despite the absence of a clinical acute liver injury phenotype, endothelial cell composition was dramatically impacted in COVID-19, concomitantly with extensive alterations and profibrogenic activation of reactive cholangiocytes and mesenchymal cells. Our atlas provides novel insights into liver physiology and pathology in COVID-19 and forms a foundational resource for its investigation and understanding.
408
Citation6
0
Save
7

Multi-modal single-cell and whole-genome sequencing of minute, frozen specimens to propel clinical applications

Yiping Wang et al.Oct 24, 2023
+17
J
J
Y
ABSTRACT Single-cell genomics are enabling technologies, but their broad clinical application remains challenging. We report an easily adaptable approach for single-cell transcriptome and T cell receptor (TCR)-sequencing, and matched whole-genome sequencing from tiny, frozen clinical specimens. We achieve similar quality and biological outputs while reducing artifactual signals compared to data from matched fresh tissue samples. Profiling sequentially collected melanoma samples from the KEYNOTE-001 trial, we resolve cellular, genomic, and clonotype dynamics that encapsulate molecular patterns of tumor evolution during anti-PD-1 therapy. To demonstrate applicability to banked biospecimens of rare diseases, we generate a large uveal melanoma liver metastasis single-cell and matched WGS atlas, which revealed niche-specific impairment of clonal T cell expansion. This study provides a foundational framework for propelling single-cell genomics to the clinical arena.
7
Citation3
0
Save
0

Tyrosine phosphorylation of ACLY regulates lipid metabolism and oncogenesis in ALK positive Anaplastic Large Cell Lymphoma

Johnvesly Basappa et al.May 7, 2020
+21
D
M
J
A fundamental requirement for growth of rapidly proliferating cells is metabolic adaptation to promote synthesis of biomass. ATP citrate lyase (ACLY) is a critical enzyme responsible for synthesis of cytosolic acetyl-CoA, the key building component for de novo fatty acid synthesis and links vital pathways such as carbohydrate and lipid metabolism. The mechanisms of ACLY regulation are not completely understood and the regulation of ACLY function by tyrosine phosphorylation is unknown. Here we show using mass-spectrometry-driven phosphoproteomics and metabolomics that ACLY is phosphorylated and functionally regulated at an evolutionary conserved residue, Y682 in ALK+ lymphoma. Physiologic signals promoting rapid cell growth such as epidermal growth factor stimulation in epithelial cells and T-cell receptor activation in primary human T-cells result in rapid phosphorylation of ACLY at Y682. In vitro kinase assays demonstrate that Y682 is directly phosphorylated by multiple tyrosine kinases, including ALK, ROS1, SRC, JAK2 and LTK. Oncogenically activating structural alterations such as gene-fusions, amplification or point mutations of ALK tyrosine kinase result in constitutive phosphorylation of ACLY in diverse forms of primary human cancer such as lung cancer, anaplastic large cell lymphoma (ALCL) and neuroblastoma. Expression of a phosphorylation-defective ACLY-Y682F mutant in NPM-ALK+ ALCL decreases ACLY activity and attenuates lipid synthesis. Metabolomic analyses reveal that ACLY-Y682F expression results in increased β-oxidation of 13C-oleic acid-labeled fatty acid with increased labeling of +2-citrate (p<0.01) and +18-oleyol carnitine (p<0.001). Similarly, oxygen consumption rate (OCR) is significantly increased in cells expressing ACLY-Y682F (p<0.001). Moreover, expression of ACLY-Y682F dramatically decreases cell proliferation, impairs clonogenicity and abrogates tumor growth in vivo. Tyrosine phosphorylation of ACLY is increased in crizotinib-resistant cells and may contribute to acquired resistance. Our results reveal a novel mechanism for direct ACLY regulation that is subverted by multiple oncogenically-activated tyrosine kinases in diverse human cancers. These findings have significant implications for novel therapies targeting ACLY in cancer and metabolism.