WH
William Hatleberg
Author with expertise in Global Diversity of Microbial Eukaryotes and Their Evolution
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
7
h-index:
7
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
18

New hypotheses of cell type diversity and novelty from comparative single cell and nuclei transcriptomics in echinoderms

Anne Meyer et al.May 7, 2022
Abstract Cell types are the fundamental building blocks of metazoan biodiversity and offer a powerful perspective for inferring evolutionary phenomena. With the development of single-cell transcriptomic techniques, new definitions of cell types are emerging. This allows a conceptual reassessment of traditional definitions of novel cell types and their evolution. Research in echinoderms, particularly sea star and sea urchin embryos have contributed significantly to understanding the evolution of novel cell types, in particular the primary mesenchyme cells (PMCs) and pigment cells that are found in sea urchin but not sea star embryos. This paper outlines the development of a gene expression atlas for the bat star, Patiria miniata , using single nuclear RNA sequencing (snRNA-seq) of embryonic stages. The atlas revealed 22 cell clusters covering all expected cell types from the endoderm, mesoderm and ectoderm germ layers. In particular, four distinct neural clusters, an immune cluster, and distinct right and left coelom clusters were revealed as distinct cell states. A comparison with Strongylocentrotus purpuratus embryo single cell transcriptomes was performed using 1:1 orthologs to anchor and then compare gene expression patterns. S. purpuratus primordial germ cell equivalents were not detected in P. minata , while the left coelom of P. miniata has no equivalent cell cluster in S. purpuratus . Pigment cells of S. purpuratus map to clusters containing immune mesenchyme and neural cells of P. miniata , while the PMCs of S. purpuratus are revealed as orthologous to the right coelom cluster of P. miniata . These results suggest a new interpretation of the evolution of these well-studied cell types and a reflection on the definition of novel cell types.
18
Citation7
0
Save
0

Pluripotency and the origin of animal multicellularity

Shunsuke Sogabe et al.Mar 1, 2019
The most widely held, but rarely tested, hypothesis for the origin of animals is that they evolved from a unicellular ancestor with an apical cilium surrounded by a microvillar collar that structurally resembled present-day sponge choanocytes and choanoflagellates1,2,3,4. Here we test this traditional view of the origin of the animal kingdom by comparing the transcriptomes, fates and behaviours of the three primary sponge cell types, choanocytes, pluripotent mesenchymal archeocytes and epithelial pinacocytes, with choanoflagellates and other unicellular holozoans. Unexpectedly, we find the transcriptome of sponge choanocytes is the least similar to the transcriptomes of choanoflagellates and is significantly enriched in genes unique to either animals or to sponges alone. In contrast, pluripotent archeocytes upregulate genes controlling cell proliferation and gene expression, as in other metazoan stem cells and in the proliferating stages of two closely-related unicellular holozoans, including a colonial choanoflagellate. In the context of the body plan of the sponge, Amphimedon queenslandica, we show that choanocytes appear late in development and are the result of a transdifferentiation event. They exist in a metastable state and readily transdifferentiate into archeocytes, which can differentiate into a range of other cell types. These sponge cell type conversions are similar to the temporal cell state changes that occur in many unicellular holozoans5. Together, these analyses offer no support for the homology of sponge choanocytes and choanoflagellates, nor for the view that the first multicellular animals were simple balls of cells with limited capacity to differentiate. Instead, our results are consistent with the first animal cell being able to transition between multiple states in a manner similar to modern transdifferentiating and stem cells.
24

Lipopolysaccharide integrity primes bacterial sensitivity to a cell wall-degrading intermicrobial toxin

Kristine Trotta et al.Jan 21, 2023
ABSTRACT Gram-negative bacteria can antagonize neighboring microbes using a type VI secretion system (T6SS) to deliver toxins that target different essential cellular features. Despite the conserved nature of these targets, T6SS potency can vary across recipient species. To understand the molecular basis of intrinsic T6SS susceptibility, we screened for essential Escherichia coli genes that affect its survival when antagonized by a cell wall-degrading T6SS toxin from Pseudomonas aeruginosa , Tae1. We revealed genes associated with both the cell wall and a separate layer of the cell envelope, surface lipopolysaccharide, that modulate Tae1 toxicity in vivo . Disruption of lipopolysaccharide synthesis provided Escherichia coli (Eco) with novel resistance to Tae1, despite significant cell wall degradation. These data suggest that Tae1 toxicity is determined not only by direct substrate damage, but also by indirect cell envelope homeostasis activities. We also found that Tae1-resistant Eco exhibited reduced cell wall synthesis and overall slowed growth, suggesting that reactive cell envelope maintenance pathways could promote, not prevent, self-lysis. Together, our study highlights the consequences of co-regulating essential pathways on recipient fitness during interbacterial competition, and how antibacterial toxins leverage cellular vulnerabilities that are both direct and indirect to their specific targets in vivo .