JB
Jessica Bérichel
Author with expertise in Chimeric Antigen Receptor T Cell Therapy
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
9
(67% Open Access)
Cited by:
597
h-index:
16
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Intratumoral mregDC and CXCL13 T helper niches enable local differentiation of CD8 T cells following PD-1 blockade

Assaf Magen et al.Jun 26, 2022
ABSTRACT Here, we leveraged a large neoadjuvant PD-1 blockade trial in patients with hepatocellular carcinoma (HCC) to search for correlates of response to immune checkpoint blockade (ICB) within T cell-rich tumors. We show that ICB response correlated with the clonal expansion of intratumoral CXCL13 + CH25H + IL-21 + PD-1 + CD4 T helper cells (CXCL13 + Th) and Granzyme K + PD-1 + effector-like CD8 T cells, whereas terminally exhausted CD39 hi TOX hi PD-1 hi CD8 T cells dominated in non-responders. Strikingly, most T cell receptor (TCR) clones that expanded post-treatment were found in pre-treatment biopsies. Notably, PD-1 + TCF-1 + progenitor-like CD8 T cells were present in tumors of responders and non-responders and shared clones mainly with effector-like cells in responders or terminally differentiated cells in non-responders, suggesting that local CD8 T cell differentiation occurs upon ICB. We found that these progenitor CD8 T cells interact with CXCL13 + Th cells within cellular triads around dendritic cells enriched in maturation and regulatory molecules, or “mregDC”. Receptor-ligand analysis revealed unique interactions within these triads that may promote the differentiation of progenitor CD8 T cells into effector-like cells upon ICB. These results suggest that discrete intratumoral niches that include mregDC and CXCL13 + Th cells control the differentiation of tumor-specific progenitor CD8 T cell clones in patients treated with ICB.
1
Citation8
0
Save
1

Perturb-map enables CRISPR genomics with spatial resolution and identifies regulators of tumor immune composition

Maxime Dhainaut et al.Jul 14, 2021
SUMMARY The cellular architecture of a tumor, particularly immune composition, has a major impact on cancer outcome, and thus there is an interest in identifying genes that control the tumor microenvironment (TME). While CRISPR screens are helping uncover genes regulating many cell-intrinsic processes, existing approaches are suboptimal for identifying gene functions operating extracellularly or within a tissue context. To address this, we developed an approach for spatial functional genomics called Perturb-map, which utilizes protein barcodes (Pro-Code) to enable spatial detection of barcoded cells within tissue. We show >120 Pro-Codes can be imaged within a tumor, facilitating spatial mapping of 100s of cancer clones. We applied Perturb-map to knockout dozens of genes in parallel in a mouse model of lung cancer and simultaneously assessed how each knockout influenced tumor growth, histopathology, and immune composition. Additionally, we paired Perturb-map and spatial transcriptomics for unbiased molecular analysis of Pro-Code/CRISPR lesions. Our studies found in Tgfbr2 knockout lesions, the TME was converted to a mucinous state and T-cells excluded, which was concomitant with increased TGFβ expression and pathway activation, suggesting Tgfbr2 loss on lung cancer cells enhanced suppressive effects of TGFβ on the TME. These studies establish Perturb-map for functional genomics within a tissue at single cell-resolution with spatial architecture preserved.
1
Citation3
0
Save
1

Circulating senescent myeloid cells drive blood brain barrier breakdown and neurodegeneration

C. Wilk et al.Oct 11, 2023
Summary Neurodegenerative diseases (ND) are characterized by progressive loss of neuronal function. Mechanisms of ND pathogenesis are incompletely understood, hampering the development of effective therapies. Langerhans cell histiocytosis (LCH) is an inflammatory neoplastic disorder caused by hematopoietic progenitors expressing MAPK activating mutations that differentiate into senescent myeloid cells that drive lesion formation. Some patients with LCH subsequently develop progressive and incurable neurodegeneration (LCH-ND). Here, we show that LCH-ND is caused by myeloid cells that are clonal with peripheral LCH cells. We discovered that circulating BRAF V600E + myeloid cells cause the breakdown of the blood-brain barrier (BBB), enhancing migration into the brain parenchyma where they differentiate into senescent, inflammatory CD11a + macrophages that accumulate in the brainstem and cerebellum. Blocking MAPK activity and senescence programs reduced parenchymal infiltration, neuroinflammation, neuronal damage and improved neurological outcome in preclinical LCH-ND. MAPK activation and senescence programs in circulating myeloid cells represent novel and targetable mechanisms of ND.
0

AXL limits the mobilization of cholesterol to regulate dendritic cell maturation and the immunogenic response to cancer

Meriem Belabed et al.Dec 25, 2023
Summary We previously found that uptake of cellular debris prompts conventional dendritic cells (cDCs) to undergo maturation. This transformation results in DCs entering the molecular state termed ‘mregDC’. In this state, mregDCs dampen their ability to acquire new antigens, upregulate chemokine receptors to migrate to lymphoid organs, and upregulate MHC-I and -II, co-stimulatory, and -inhibitory molecules to promote the differentiation of antigen-specific T cells. Here, we show that cholesterol mobilization – through both de novo synthesis and the acquisition of the metabolite during debris uptake – drives cDCs to mature into mregDCs. This cholesterol is used to assemble lipid nanodomains on the plasma membrane of mregDCs to support cell surface expression of maturation markers. This process is dependent on both de novo synthesis and Niemann-Pick disease type C1 (NPC1), which shuttles cholesterol from the endolysosomal pathway. Specifically, NPC1 mediated the accumulation of IFN-ɣ receptor (IFNɣR) in cell surface lipid nanodomains, enabling optimal IFNɣR signaling required for IL-12 production and efficient T cell activation. Importantly, we also show that the receptor tyrosine kinase AXL constitutively dampens the cholesterol-dependent construction of lipid nanodomains on mregDCs; its deletion from cDCs enhance mregDC immunogenicity and yielded potent anti-tumor immunity in an experimental model of lung cancer. Altogether, our findings present novel insights into the mobilization of cholesterol for proper immune receptor signaling as a basis for cDC maturation and the novel role of AXL as a central regulator of this process that can be therapeutically targeted to leverage the immunostimulatory features of mregDCs.
0

Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumors

Samarth Hegde et al.Jun 28, 2024
ABSTRACT Monocyte–derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs’ survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.