MH
Matthew Hotopf
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(25% Open Access)
Cited by:
78
h-index:
31
/
i10-index:
59
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
8

Mental health consequences of urban air pollution: prospective population-based longitudinal survey

Ioannis Bakolis et al.Oct 24, 2020
The World Health Organisation (WHO) recently ranked air pollution as the major environmental cause of premature death. However, the significant potential health and societal costs of poor mental health in relation to air quality are not represented in the WHO report due to limited evidence. We aimed to test the hypothesis that long-term exposure to air pollution is associated with poor mental health.A prospective longitudinal population-based mental health survey was conducted of 1698 adults living in 1075 households in South East London, from 2008 to 2013. High-resolution quarterly average air pollution concentrations of nitrogen dioxide (NO2) and oxides (NOx), ozone (O3), particulate matter with an aerodynamic diameter < 10 μm (PM10) and < 2.5 μm (PM2.5) were linked to the home addresses of the study participants. Associations with mental health were analysed with the use of multilevel generalised linear models, after adjusting for large number of confounders, including the individuals' socioeconomic position and exposure to road-traffic noise.We found robust evidence for interquartile range increases in PM2.5, NOx and NO2 to be associated with 18-39% increased odds of common mental disorders, 19-30% increased odds of poor physical symptoms and 33% of psychotic experiences only for PM10. These longitudinal associations were more pronounced in the subset of non-movers for NO2 and NOx.The findings suggest that traffic-related air pollution is adversely affecting mental health. Whilst causation cannot be proved, this work suggests substantial morbidity from mental disorders could be avoided with improved air quality.
0

Assessing 42 inflammatory markers in 321 control subjects and 887 major depressive disorder cases: BMI and other confounders and overall predictive ability for current depression

Timothy Powell et al.May 21, 2018
Inflammatory markers such as cytokines represent potential biomarkers for major depressive disorder (MDD). Many, generally small studies have examined the role of single markers and found significant associations. We assessed 42 inflammatory markers, namely cytokines, in the blood of 321 control subjects and 887 MDD cases. We tested whether individual inflammatory marker levels were significantly affected by MDD case/control status, current episode, or current depression severity, co-varying for age, sex, body mass index (BMI), smoking, current antidepressant use, ethnicity, assay batch and study effects. We further used machine learning algorithms to investigate if we could use our data to blindly discriminate MDD patients, or those in a current episode. We found broad and powerful influences of confounding factors on log-protein levels. Notably, IL-6 levels were very strongly influenced by BMI (p = 1.37 x 10-43, variance explained = 18%), while Interleukin-16 was the most significant predictor of current depressive episode (p = 0.003, variance explained = 0.9%, q < 0.1). No single inflammatory marker predicted MDD case/control status when a subject was not in a depressed episode, nor did any predict depression severity. Machine learning results revealed that using inflammatory marker data with clinical confounder information significantly increased precision for differentiating MDD patients who were in an episode. To conclude, a wide panel of inflammatory markers alongside clinical information may aid in predicting the onset of symptoms, but no single inflammatory protein is likely to represent a clinically useful biomarker for MDD diagnosis or prognosis. We note that the potential influence of physical health related and population stratification related confounders on inflammatory biomarker studies in psychiatry is considerable.
0

Factors associated with sharing email information and mental health survey participation in large population cohorts

Mark Adams et al.Nov 19, 2018
People who opt to participate in scientific studies tend to be healthier, wealthier, and more educated than the broader population. While selection bias does not always pose a problem for analysing the relationships between exposures and diseases or other outcomes, it can lead to biased effect size estimates. Biased estimates may weaken the utility of genetic findings because the goal is often to make inferences in a new sample (such as in polygenic risk score analysis). We used data from UK Biobank and Generation Scotland and conducted phenotypic and genome-wide association analyses on two phenotypes that reflected mental health data availability: (1) whether participants were contactable by email for follow-up) and (2) whether participants responded to a follow-up surveys of mental health. We identified nine genetic loci associated with email contact and 25 loci associated with mental health survey completion. Both phenotypes were positively genetically correlated with higher educational attainment and better health and negatively genetically correlated with psychological distress and schizophrenia. Recontact availability and follow-up participation can act as further genetic filters for data on mental health phenotypes.