NO
Nikolaas Oosterhof
Author with expertise in Neural Mechanisms of Face Perception and Recognition
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
8
(38% Open Access)
Cited by:
3,569
h-index:
31
/
i10-index:
34
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The functional basis of face evaluation

Nikolaas Oosterhof et al.Aug 7, 2008
People automatically evaluate faces on multiple trait dimensions, and these evaluations predict important social outcomes, ranging from electoral success to sentencing decisions. Based on behavioral studies and computer modeling, we develop a 2D model of face evaluation. First, using a principal components analysis of trait judgments of emotionally neutral faces, we identify two orthogonal dimensions, valence and dominance, that are sufficient to describe face evaluation and show that these dimensions can be approximated by judgments of trustworthiness and dominance. Second, using a data-driven statistical model for face representation, we build and validate models for representing face trustworthiness and face dominance. Third, using these models, we show that, whereas valence evaluation is more sensitive to features resembling expressions signaling whether the person should be avoided or approached, dominance evaluation is more sensitive to features signaling physical strength/weakness. Fourth, we show that important social judgments, such as threat, can be reproduced as a function of the two orthogonal dimensions of valence and dominance. The findings suggest that face evaluation involves an overgeneralization of adaptive mechanisms for inferring harmful intentions and the ability to cause harm and can account for rapid, yet not necessarily accurate, judgments from faces.
0

CoSMoMVPA: Multi-Modal Multivariate Pattern Analysis of Neuroimaging Data in Matlab/GNU Octave

Nikolaas Oosterhof et al.Jul 22, 2016
Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU Octave languages, that treats both fMRI and M/EEG data as first-class citizens. CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification, correlations, representational similarity analysis, and the time generalization method. These can be used to address both data-driven and hypothesis-driven questions about neural organization and representations, both within and across: space, time, frequency bands, neuroimaging modalities, individuals, and species. It uses a uniform data representation of fMRI data in the volume or on the surface, and of M/EEG data at the sensor and source level. Through various external toolboxes, it directly supports reading and writing a variety of fMRI and M/EEG neuroimaging formats, and, where applicable, can convert between them. As a result, it can be integrated readily in existing pipelines and used with existing preprocessed datasets. CoSMoMVPA overloads the traditional volumetric searchlight concept to support neighborhoods for M/EEG and surface-based fMRI data, which supports localization of multivariate effects of interest across space, time, and frequency dimensions. CoSMoMVPA also provides a generalized approach to multiple comparison correction across these dimensions using Threshold-Free Cluster Enhancement with state-of-the-art clustering and permutation techniques. CoSMoMVPA is highly modular and uses abstractions to provide a uniform interface for a variety of MVP measures. Typical analyses require a few lines of code, making it accessible to beginner users. At the same time, expert programmers can easily extend its functionality. CoSMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license. Website: http://cosmomvpa.org Source code: https://github.com/CoSMoMVPA/CoSMoMVPA.
0

Evaluating face trustworthiness: a model based approach

Alexander Todorov et al.Mar 26, 2008
Judgments of trustworthiness from faces determine basic approach/avoidance responses and approximate the valence evaluation of faces that runs across multiple person judgments. Here, based on trustworthiness judgments and using a computer model for face representation, we built a model for representing face trustworthiness (study 1). Using this model, we generated novel faces with an increased range of trustworthiness and used these faces as stimuli in a functional Magnetic Resonance Imaging study (study 2). Although participants did not engage in explicit evaluation of the faces, the amygdala response changed as a function of face trustworthiness. An area in the right amygdala showed a negative linear response—as the untrustworthiness of faces increased so did the amygdala response. Areas in the left and right putamen, the latter area extended into the anterior insula, showed a similar negative linear response. The response in the left amygdala was quadratic—strongest for faces on both extremes of the trustworthiness dimension. The medial prefrontal cortex and precuneus also showed a quadratic response, but their response was strongest to faces in the middle range of the trustworthiness dimension.
0

Shared perceptual basis of emotional expressions and trustworthiness impressions from faces.

Nikolaas Oosterhof et al.Jan 1, 2009
Using a dynamic stimuli paradigm, in which faces expressed either happiness or anger, the authors tested the hypothesis that perceptions of trustworthiness are related to these expressions. Although the same emotional intensity was added to both trustworthy and untrustworthy faces, trustworthy faces who expressed happiness were perceived as happier than untrustworthy faces, and untrustworthy faces who expressed anger were perceived as angrier than trustworthy faces. The authors also manipulated changes in face trustworthiness simultaneously with the change in expression. Whereas transitions in face trustworthiness in the direction of the expressed emotion (e.g., high-to-low trustworthiness and anger) increased the perceived intensity of the emotion, transitions in the opposite direction decreased this intensity. For example, changes from high to low trustworthiness increased the intensity of perceived anger but decreased the intensity of perceived happiness. These findings support the hypothesis that changes along the trustworthiness dimension correspond to subtle changes resembling expressions signaling whether the person displaying the emotion should be avoided or approached.
0

Attention selectively reshapes the geometry of distributed semantic representation

Samuel Nastase et al.Mar 23, 2016
Humans prioritize different semantic qualities of a complex stimulus depending on their behavioral goals. These semantic features are encoded in distributed neural populations, yet it is unclear how attention might operate across these distributed representations. To address this, we presented participants with naturalistic video clips of animals behaving in their natural environments while the participants attended to either behavior or taxonomy. We used models of representational geometry to investigate how attentional allocation affects the distributed neural representation of animal behavior and taxonomy. Attending to animal behavior transiently increased the discriminability of distributed population codes for observed actions in anterior intraparietal, pericentral, and ventral temporal cortices. Attending to animal taxonomy while viewing the same stimuli increased the discriminability of distributed animal category representations in ventral temporal cortex. For both tasks, attention selectively enhanced the discriminability of response patterns along behaviorally relevant dimensions. These findings suggest that behavioral goals alter how the brain extracts semantic features from the visual world. Attention effectively disentangles population responses for downstream read-out by sculpting representational geometry in late-stage perceptual areas.
0

CoSMoMVPA: multi-modal multivariate pattern analysis of neuroimaging data in Matlab / GNU Octave

Nikolaas Oosterhof et al.Apr 5, 2016
Recent years have seen an increase in the popularity of multivariate pattern (MVP) analysis of functional magnetic resonance (fMRI) data, and, to a much lesser extent, magneto- and electro-encephalography (M/EEG) data. We present CoSMoMVPA, a lightweight MVPA (MVP analysis) toolbox implemented in the intersection of the Matlab and GNU Octave languages, that treats both fMRI and M/EEG data as first-class citizens. CoSMoMVPA supports all state-of-the-art MVP analysis techniques, including searchlight analyses, classification, correlations, representational similarity analysis, and the time generalization method. These can be used to address both data-driven and hypothesis-driven questions about neural organization and representations, both within and across: space, time, frequency bands, neuroimaging modalities, individuals, and species. It uses a uniform data representation of fMRI data in the volume or on the surface, and of M/EEG data at the sensor and source level. Through various external toolboxes, it directly supports reading and writing a variety of fMRI and M/EEG neuroimaging formats, and, where applicable, can convert between them. As a result, it can be integrated readily in existing pipelines and used with existing preprocessed datasets. CoSMoMVPA overloads the traditional volumetric searchlight concept to support neighborhoods for M/EEG and surface-based fMRI data, which supports localization of multivariate effects of interest across space, time, and frequency dimensions. CoSMoMVPA also provides a generalized approach to multiple comparison correction across these dimensions using Threshold-Free Cluster Enhancement with state-of-the-art clustering and permutation techniques. CoSMoMVPA is highly modular and uses abstractions to provide a uniform interface for a variety of MVP measures. Typical analyses require a few lines of code, making it accessible to beginner users. At the same time, expert programmers can easily extend its functionality. CoSMoMVPA comes with extensive documentation, including a variety of runnable demonstration scripts and analysis exercises (with example data and solutions). It uses best software engineering practices including version control, distributed development, an automated test suite, and continuous integration testing. It can be used with the proprietary Matlab and the free GNU Octave software, and it complies with open source distribution platforms such as NeuroDebian. CoSMoMVPA is Free/Open Source Software under the permissive MIT license. Website: https://cosmomvpa.org Source code: https://github.com/CoSMoMVPA/CoSMoMVPA