KS
Kristin Swanson
Author with expertise in Gliomas
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
35
(43% Open Access)
Cited by:
1,908
h-index:
52
/
i10-index:
102
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Sex differences in GBM revealed by analysis of patient imaging, transcriptome, and survival data

Wei Yang et al.Jan 2, 2019
Sex differences in the incidence and outcome of human disease are broadly recognized but, in most cases, not sufficiently understood to enable sex-specific approaches to treatment. Glioblastoma (GBM), the most common malignant brain tumor, provides a case in point. Despite well-established differences in incidence and emerging indications of differences in outcome, there are few insights that distinguish male and female GBM at the molecular level or allow specific targeting of these biological differences. Here, using a quantitative imaging-based measure of response, we found that standard therapy is more effective in female compared with male patients with GBM. We then applied a computational algorithm to linked GBM transcriptome and outcome data and identified sex-specific molecular subtypes of GBM in which cell cycle and integrin signaling are the critical determinants of survival for male and female patients, respectively. The clinical relevance of cell cycle and integrin signaling pathway signatures was further established through correlations between gene expression and in vitro chemotherapy sensitivity in a panel of male and female patient-derived GBM cell lines. Together, these results suggest that greater precision in GBM molecular subtyping can be achieved through sex-specific analyses and that improved outcomes for all patients might be accomplished by tailoring treatment to sex differences in molecular mechanisms.
0
Citation294
0
Save
0

Predicting the efficacy of radiotherapy in individual glioblastoma patientsin vivo:a mathematical modeling approach

Russell Rockne et al.May 18, 2010
Glioblastoma multiforme (GBM) is the most malignant form of primary brain tumors known as gliomas. They proliferate and invade extensively and yield short life expectancies despite aggressive treatment. Response to treatment is usually measured in terms of the survival of groups of patients treated similarly, but this statistical approach misses the subgroups that may have responded to or may have been injured by treatment. Such statistics offer scant reassurance to individual patients who have suffered through these treatments. Furthermore, current imaging-based treatment response metrics in individual patients ignore patient-specific differences in tumor growth kinetics, which have been shown to vary widely across patients even within the same histological diagnosis and, unfortunately, these metrics have shown only minimal success in predicting patient outcome. We consider nine newly diagnosed GBM patients receiving diagnostic biopsy followed by standard-of-care external beam radiation therapy (XRT). We present and apply a patient-specific, biologically based mathematical model for glioma growth that quantifies response to XRT in individual patients in vivo. The mathematical model uses net rates of proliferation and migration of malignant tumor cells to characterize the tumor's growth and invasion along with the linear-quadratic model for the response to radiation therapy. Using only routinely available pre-treatment MRIs to inform the patient-specific bio-mathematical model simulations, we find that radiation response in these patients, quantified by both clinical and model-generated measures, could have been predicted prior to treatment with high accuracy. Specifically, we find that the net proliferation rate is correlated with the radiation response parameter (r = 0.89, p = 0.0007), resulting in a predictive relationship that is tested with a leave-one-out cross-validation technique. This relationship predicts the tumor size post-therapy to within inter-observer tumor volume uncertainty. The results of this study suggest that a mathematical model can create a virtual in silico tumor with the same growth kinetics as a particular patient and can not only predict treatment response in individual patients in vivo but also provide a basis for evaluation of response in each patient to any given therapy.
0
Citation274
0
Save
0

Quantifying the Role of Angiogenesis in Malignant Progression of Gliomas: In Silico Modeling Integrates Imaging and Histology

Kristin Swanson et al.Sep 8, 2011
Abstract Gliomas are uniformly fatal forms of primary brain neoplasms that vary from low- to high-grade (glioblastoma). Whereas low-grade gliomas are weakly angiogenic, glioblastomas are among the most angiogenic tumors. Thus, interactions between glioma cells and their tissue microenvironment may play an important role in aggressive tumor formation and progression. To quantitatively explore how tumor cells interact with their tissue microenvironment, we incorporated the interactions of normoxic glioma cells, hypoxic glioma cells, vascular endothelial cells, diffusible angiogenic factors, and necrosis formation into a first-generation, biologically based mathematical model for glioma growth and invasion. Model simulations quantitatively described the spectrum of in vivo dynamics of gliomas visualized with medical imaging. Furthermore, we investigated how proliferation and dispersal of glioma cells combine to induce increasing degrees of cellularity, mitoses, hypoxia-induced neoangiogenesis and necrosis, features that characterize increasing degrees of “malignancy,” and we found that changes in the net rates of proliferation (ρ) and invasion (D) are not always necessary for malignant progression. Thus, although other factors, including the accumulation of genetic mutations, can change cellular phenotype (e.g., proliferation and invasion rates), this study suggests that these are not required for malignant progression. Simulated results are placed in the context of the current clinical World Health Organization grading scheme for studying specific patient examples. This study suggests that through the application of the proposed model for tumor–microenvironment interactions, predictable patterns of dynamic changes in glioma histology distinct from changes in cellular phenotype (e.g., proliferation and invasion rates) may be identified, thus providing a powerful clinical tool. Cancer Res; 71(24); 7366–75. ©2011 AACR.
0
Citation237
0
Save
0

Radiogenomics to characterize regional genetic heterogeneity in glioblastoma

Leland Hu et al.Aug 8, 2016
Abstract Background Glioblastoma (GBM) exhibits profound intratumoral genetic heterogeneity. Each tumor comprises multiple genetically distinct clonal populations with different therapeutic sensitivities. This has implications for targeted therapy and genetically informed paradigms. Contrast-enhanced (CE)-MRI and conventional sampling techniques have failed to resolve this heterogeneity, particularly for nonenhancing tumor populations. This study explores the feasibility of using multiparametric MRI and texture analysis to characterize regional genetic heterogeneity throughout MRI-enhancing and nonenhancing tumor segments. Methods We collected multiple image-guided biopsies from primary GBM patients throughout regions of enhancement (ENH) and nonenhancing parenchyma (so called brain-around-tumor, [BAT]). For each biopsy, we analyzed DNA copy number variants for core GBM driver genes reported by The Cancer Genome Atlas. We co-registered biopsy locations with MRI and texture maps to correlate regional genetic status with spatially matched imaging measurements. We also built multivariate predictive decision-tree models for each GBM driver gene and validated accuracies using leave-one-out-cross-validation (LOOCV). Results We collected 48 biopsies (13 tumors) and identified significant imaging correlations (univariate analysis) for 6 driver genes: EGFR, PDGFRA, PTEN, CDKN2A, RB1, and TP53. Predictive model accuracies (on LOOCV) varied by driver gene of interest. Highest accuracies were observed for PDGFRA (77.1%), EGFR (75%), CDKN2A (87.5%), and RB1 (87.5%), while lowest accuracy was observed in TP53 (37.5%). Models for 4 driver genes (EGFR, RB1, CDKN2A, and PTEN) showed higher accuracy in BAT samples (n = 16) compared with those from ENH segments (n = 32). Conclusion MRI and texture analysis can help characterize regional genetic heterogeneity, which offers potential diagnostic value under the paradigm of individualized oncology.
0
Citation200
0
Save
0

MultiCellDS: a community-developed standard for curating microenvironment-dependent multicellular data

Samuel Friedman et al.Nov 30, 2016
Abstract Exchanging and understanding scientific data and their context represents a significant barrier to advancing research, especially with respect to information siloing. Maintaining information provenance and providing data curation and quality control help overcome common concerns and barriers to the effective sharing of scientific data. To address these problems in and the unique challenges of multicellular systems, we assembled a panel composed of investigators from several disciplines to create the MultiCellular Data Standard (MultiCellDS) with a use-case driven development process. The standard includes (1) digital cell lines, which are analogous to traditional biological cell lines, to record metadata, cellular microenvironment, and cellular phenotype variables of a biological cell line, (2) digital snapshots to consistently record simulation, experimental, and clinical data for multicellular systems, and (3) collections that can logically group digital cell lines and snapshots. We have created a MultiCellular DataBase (MultiCellDB) to store digital snapshots and the 200+ digital cell lines we have generated. MultiCellDS, by having a fixed standard, enables discoverability, extensibility, maintainability, searchability, and sustainability of data, creating biological applicability and clinical utility that permits us to identify upcoming challenges to uplift biology and strategies and therapies for improving human health.
0
Citation11
0
Save
1

Glioblastoma states are defined by cohabitating cellular populations with progression-, imaging- and sex-distinct patterns

Kamila Bond et al.Mar 26, 2022
Abstract Glioblastomas (GBMs) are biologically heterogeneous within and between patients. Many previous attempts to characterize this heterogeneity have classified tumors according to their omics similarities. These discrete classifications have predominantly focused on characterizing malignant cells, neglecting the immune and other cell populations that are known to be present. We leverage a manifold learning algorithm to define a low-dimensional transcriptional continuum along which heterogeneous GBM samples organize. This reveals three polarized states: invasive, immune/inflammatory, and proliferative. The location of each sample along this continuum correlates with the abundance of eighteen malignant, immune, and other cell populations. We connect these cell abundances with magnetic resonance imaging and find that the relationship between contrast enhancement and tumor composition varies with patient sex and treatment status. These findings suggest that GBM transcriptional biology is a predictably constrained continuum that contains a limited spectrum of viable cell cohabitation ecologies. Since the relationships between this ecological continuum and imaging vary with patient sex and tumor treatment status, studies that integrate imaging features with tumor biology should incorporate these variables in their design.
1
Citation5
0
Save
0

ENvironmental Dynamics Underlying Responsive Extreme Survivors (ENDURES) of Glioblastoma: a Multi-disciplinary Team-based, Multifactorial Analytical Approach

Sandra Johnston et al.Nov 4, 2018
Although glioblastoma is a fatal primary brain cancer with a short median survival of 15 months, a small number of patients survive more than 5 years after diagnosis; they are known as extreme survivors (ES). Due to their rarity, very little is known about what differentiates these outliers from other glioblastoma patients. For the purpose of identifying unknown drivers of extreme survivorship in glioblastoma, we developed the ENDURES consortium (ENvironmental Dynamics Underlying Responsive Extreme Survivors of glioblastoma). This consortium is a multicenter collaborative network of investigators focused on the integration of multiple types of clinical data and the creation of patient-specific models of tumor growth informed by radiographic and histological parameters. Leveraging our combined resources, the goals of the ENDURES consortium are two-fold: (1) to build a curated, searchable, multilayered repository housing clinical and outcome data on a large cohort of ES patients with glioblastoma and (2) to leverage the ENDURES repository for new insights on tumor behavior and novel targets for prolonging survival for all glioblastoma patients. In this article, we review the available literature and discuss what is already known about ES. We then describe the creation of our consortium and some of our preliminary results.
Load More