DB
Darrin Bann
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
366
h-index:
18
/
i10-index:
27
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Integrative detection and analysis of structural variation in cancer genomes

Jesse Dixon et al.Sep 4, 2018
Structural variants (SVs) can contribute to oncogenesis through a variety of mechanisms. Despite their importance, the identification of SVs in cancer genomes remains challenging. Here, we present a framework that integrates optical mapping, high-throughput chromosome conformation capture (Hi-C), and whole-genome sequencing to systematically detect SVs in a variety of normal or cancer samples and cell lines. We identify the unique strengths of each method and demonstrate that only integrative approaches can comprehensively identify SVs in the genome. By combining Hi-C and optical mapping, we resolve complex SVs and phase multiple SV events to a single haplotype. Furthermore, we observe widespread structural variation events affecting the functions of noncoding sequences, including the deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel three-dimensional chromatin structural domains. Our results indicate that noncoding SVs may be underappreciated mutational drivers in cancer genomes. The authors present an integrative framework for identifying structural variants (SVs) in cancer that applies optical mapping, Hi-C, and whole-genome sequencing. They find SVs affecting distal regulatory sequences, DNA replication, and three-dimensional chromatin structure.
0
Citation366
0
Save
0

An Integrative Framework For Detecting Structural Variations In Cancer Genomes

Jesse Dixon et al.Mar 28, 2017
Structural variants can contribute to oncogenesis through a variety of mechanisms, yet, despite their importance, the identification of structural variants in cancer genomes remains challenging. Here, we present an integrative framework for comprehensively identifying structural variation in cancer genomes. For the first time, we apply next-generation optical mapping, high-throughput chromosome conformation capture (Hi-C) techniques, and whole genome sequencing to systematically detect SVs in a variety of cancer cells. Using this approach, we identify and characterize structural variants in up to 29 commonly used normal and cancer cell lines. We find that each method has unique strengths in identifying different classes of structural variants and at different scales, suggesting that integrative approaches are likely the only way to comprehensively identify structural variants in the genome. Studying the impact of the structural variants in cancer cell lines, we identify widespread structural variation events affecting replication timing and the functions of non-coding sequences in the genome, including the deletion of distal regulatory sequences, alteration of DNA replication timing, and the creation of novel 3D chromatin structural domains. These results underscore the importance of comprehensive structural variant identification and indicate that non-coding structural variation may be an underappreciated mutational process in cancer genomes.
0

An Integrated Framework for Genome Analysis Reveals Numerous Previously Unrecognizable Structural Variants in Leukemia Patients' Samples

Jie Xu et al.Feb 28, 2019
While genomic analysis of tumors has stimulated major advances in cancer diagnosis, prognosis and treatment, current methods fail to identify a large fraction of somatic structural variants in tumors. We have applied a combination of whole genome sequencing and optical genome mapping to a number of adult and pediatric leukemia samples, which revealed in each of these samples a large number of structural variants not recognizable by current tools of genomic analyses. We developed computational methods to determine which of those variants likely arose as somatic mutations. The method identified 97% of the structural variants previously reported by karyotype analysis of these samples and revealed an additional fivefold more such somatic rearrangements. The method identified on average tens of previously unrecognizable inversions and duplications and hundreds of previously unrecognizable insertions and deletions. These structural variants recurrently affected a number of leukemia associated genes as well as cancer driver genes not previously associated with leukemia and genes not previously associated with cancer. A number of variants only affected intergenic regions but caused cis-acting alterations in expression of neighboring genes. Analysis of TCGA data indicates that the status of several of the recurrently mutated genes identified in this study significantly affect survival of AML patients. Our results suggest that current genomic analysis methods fail to identify a majority of structural variants in leukemia samples and this lacunae may hamper diagnostic and prognostic efforts.