MS
Molly Stevens
Author with expertise in Bone Tissue Engineering and Biomaterials
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
32
(91% Open Access)
Cited by:
6,800
h-index:
109
/
i10-index:
415
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Biomaterials for bone tissue engineering

Molly StevensApr 21, 2008
M
Materials that enhance bone regeneration have a wealth of potential clinical applications from the treatment of nonunion fractures to spinal fusion. The use of porous material scaffolds from bioceramic and polymer components to support bone cell and tissue growth is a longstanding area of interest. Current challenges include the engineering of materials that can match both the mechanical and biological context of real bone tissue matrix and support the vascularization of large tissue constructs. Scaffolds with new levels of biofunctionality that attempt to recreate nanoscale topographical and biofactor cues from the extracellular environment are emerging as interesting candidate biomimetic materials.
0

Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity

Andreas Blaeser et al.Dec 2, 2015
+3
U
D
A
A microvalve-based bioprinting system for the manufacturing of high-resolution, multimaterial 3D-structures is reported. Applying a straightforward fluid-dynamics model, the shear stress at the nozzle site can precisely be controlled. Using this system, a broad study on how cell viability and proliferation potential are affected by different levels of shear stress is conducted. Complex, multimaterial 3D structures are printed with high resolution. This work pioneers the investigation of shear stress-induced cell damage in 3D bioprinting and might help to comprehend and improve the outcome of cell-printing studies in the future.
0
Citation645
0
Save
0

The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro

Eileen Gentleman et al.Feb 19, 2010
+4
G
Y
E
Bioactive glasses (BG) which contain strontium have the potential to combine the known bone regenerative properties of BG with the anabolic and anti-catabolic effects of strontium cations. Here we created a BG series (SiO2–P2O5–Na2O–CaO) in which 0–100% of the calcium was substituted by strontium and tested their effects on osteoblasts and osteoclasts in vitro. We show that ions released from strontium-substituted BG enhance metabolic activity in osteoblasts. They also inhibit osteoclast activity by both reducing tartrate resistant acid phosphatase activity and inhibiting resorption of calcium phosphate films in a dose-dependent manner. Additionally, osteoblasts cultured in contact with BG show increased proliferation and alkaline phosphatase activity with increasing strontium substitution, while osteoclasts adopt typical resorption morphologies. These results suggest that similarly to the osteoporosis drug strontium ranelate, strontium-substituted BG may promote an anabolic effect on osteoblasts and an anti-catabolic effect on osteoclasts. These effects, when combined with the advantages of BG such as controlled ion release and delivery versatility, may make strontium-substituted BG an effective biomaterial choice for a range of bone regeneration therapies.
0

Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins

Gregor Fuhrmann et al.Dec 4, 2014
+2
M
A
G
Extracellular vesicles (EVs) are phospholipid-based particles endogenously produced by cells. Their natural composition and selective cell interactions make them promising drug carriers. However, in order to harness their properties, efficient exogenous drug encapsulation methods need to be investigated. Here, EVs from various cellular origins (endothelial, cancer and stem cells) were produced and characterised for size and composition. Porphyrins of different hydrophobicities were employed as model drugs and encapsulated into EVs using various passive and active methods (electroporation, saponin, extrusion and dialysis). Hydrophobic compounds loaded very efficiently into EVs and at significantly higher amounts than into standard liposomes composed of phosphocholine and cholesterol using passive incubation. Moreover, loading into EVs significantly increased the cellular uptake by >60% and the photodynamic effect of hydrophobic porphyrins in vitro compared to free or liposome encapsulated drug. The active encapsulation techniques, with the saponin-assisted method in particular, allowed an up to 11 fold higher drug loading of hydrophilic porphyrins compared to passive methods. EVs loaded with hydrophilic porphyrins induced a stronger phototoxic effect than free drug in a cancer cell model. Our findings create a firm basis for the development of EVs as smart drug carriers based on straightforward and transferable methods.
0

The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation

Suwimon Boonrungsiman et al.Jul 24, 2012
+4
R
E
S
Mineralization is a ubiquitous process in the animal kingdom and is fundamental to human development and health. Dysfunctional or aberrant mineralization leads to a variety of medical problems, and so an understanding of these processes is essential to their mitigation. Osteoblasts create the nano-composite structure of bone by secreting a collagenous extracellular matrix (ECM) on which apatite crystals subsequently form. However, despite their requisite function in building bone and decades of observations describing intracellular calcium phosphate, the precise role osteoblasts play in mediating bone apatite formation remains largely unknown. To better understand the relationship between intracellular and extracellular mineralization, we combined a sample-preparation method that simultaneously preserved mineral, ions, and ECM with nano-analytical electron microscopy techniques to examine osteoblasts in an in vitro model of bone formation. We identified calcium phosphate both within osteoblast mitochondrial granules and intracellular vesicles that transported material to the ECM. Moreover, we observed calcium-containing vesicles conjoining mitochondria, which also contained calcium, suggesting a storage and transport mechanism. Our observations further highlight the important relationship between intracellular calcium phosphate in osteoblasts and their role in mineralizing the ECM. These observations may have important implications in deciphering both how normal bone forms and in understanding pathological mineralization.
0

Fractal-like hierarchical organization of bone begins at the nanoscale

Natalie Reznikov et al.May 3, 2018
+2
L
M
N
The components of bone assemble hierarchically to provide stiffness and toughness. However, the organization and relationship between bone's principal components-mineral and collagen-has not been clearly elucidated. Using three-dimensional electron tomography imaging and high-resolution two-dimensional electron microscopy, we demonstrate that bone mineral is hierarchically assembled beginning at the nanoscale: Needle-shaped mineral units merge laterally to form platelets, and these are further organized into stacks of roughly parallel platelets. These stacks coalesce into aggregates that exceed the lateral dimensions of the collagen fibrils and span adjacent fibrils as continuous, cross-fibrillar mineralization. On the basis of these observations, we present a structural model of hierarchy and continuity for the mineral phase, which contributes to the structural integrity of bone.
0
Citation467
0
Save
0

Substrate stiffness affects early differentiation events in embryonic stem cells

Nicholas Evans et al.Sep 21, 2009
+6
E
C
N
Embryonic stem cells (ESC) are both a potential source of cells for tissue replacement therapies and an accessible tool to model early embryonic development. Chemical factors such as soluble growth factors and insoluble components of the extracellular matrix are known to affect the differentiation of murine ESCs. However, there is also evidence to suggest that undifferentiated cells can both sense the mechanical properties of their environment and differentiate accordingly. By growing ESCs on flexible polydimethylsiloxane substrates with varying stiffness, we tested the hypothesis that substrate stiffness can influence ESC differentiation. While cell attachment was unaffected by the stiffness of the growth substrate, cell spreading and cell growth were all increased as a function of substrate stiffness. Similarly, several genes expressed in the primitive streak during gastrulation and implicated in early mesendoderm differentiation, such as Brachyury, Mixl1 and Eomes, were upregulated in cell cultures on stiffer compared to softer substrates. Finally, we demonstrated that osteogenic differentiation of ESCs was enhanced on stiff substrates compared to soft substrates, illustrating that the mechanical environment can play a role in both early and terminal ESC differentiation. Our results suggest a fundamental role for mechanosensing in mammalian development and illustrate that the mechanical environment should be taken into consideration when engineering implantable scaffolds or when producing therapeutically relevant cell populations in vitro.
0

Plasmonic nanosensors with inverse sensitivity by means of enzyme-guided crystal growth

Laura Rodríguez‐Lorenzo et al.May 25, 2012
+2
R
R
L
Conventional sensors generate a signal that is directly proportional to the concentration of the target molecule. Now, by means of an enzyme that controls the growth of silver nanocrystals on plasmonic transducers, a nanosensor with sensitivity that is inversely proportional to concentration and that can detect ultralow concentrations of the cancer biomarker prostate-specific antigen in whole serum is demonstrated. Lowering the limit of detection is key to the design of sensors needed for food safety regulations1,2, environmental policies3,4,5 and the diagnosis of severe diseases6,7,8,9,10. However, because conventional transducers generate a signal that is directly proportional to the concentration of the target molecule, ultralow concentrations of the molecule result in variations in the physical properties of the sensor that are tiny, and therefore difficult to detect with confidence. Here we present a signal-generation mechanism that redefines the limit of detection of nanoparticle sensors by inducing a signal that is larger when the target molecule is less concentrated. The key step to achieve this inverse sensitivity is to use an enzyme that controls the rate of nucleation of silver nanocrystals on plasmonic transducers. We demonstrate the outstanding sensitivity and robustness of this approach by detecting the cancer biomarker prostate-specific antigen down to 10−18 g ml−1 (4 × 10−20 M) in whole serum.
0

Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization

Ciro Chiappini et al.Mar 30, 2015
+4
J
E
C
The controlled delivery of nucleic acids to selected tissues remains an inefficient process mired by low transfection efficacy, poor scalability because of varying efficiency with cell type and location, and questionable safety as a result of toxicity issues arising from the typical materials and procedures employed. High efficiency and minimal toxicity in vitro has been shown for intracellular delivery of nuclei acids by using nanoneedles, yet extending these characteristics to in vivo delivery has been difficult, as current interfacing strategies rely on complex equipment or active cell internalization through prolonged interfacing. Here, we show that a tunable array of biodegradable nanoneedles fabricated by metal-assisted chemical etching of silicon can access the cytosol to co-deliver DNA and siRNA with an efficiency greater than 90%, and that in vivo the nanoneedles transfect the VEGF-165 gene, inducing sustained neovascularization and a localized sixfold increase in blood perfusion in a target region of the muscle. Efficient in vivo cytosolic delivery of nucleic acids through cell-membrane puncturing by an array of biodegradable silicon nanoneedles induces sustained local neovascularization in muscle.
Load More