AF
Arnaud Falchier
Author with expertise in Neuronal Oscillations in Cortical Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
14
(64% Open Access)
Cited by:
2,413
h-index:
20
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Anatomical Evidence of Multimodal Integration in Primate Striate Cortex

Arnaud Falchier et al.Jul 1, 2002
H
P
S
A
The primary visual cortex (area 17 or V1) is not thought to receive input from nonvisual extrastriate cortical areas. However, this has yet to be shown to be the case using sensitive tracers in the part of area 17 subserving the peripheral visual field. Here we show using retrograde tracers that peripheral area 17 subserving the visual field at an eccentricity of 10–20° receives projections from the core and parabelt areas of the auditory cortex as well as from the polysensory area of the temporal lobe (STP). The relative strength of these projections was calculated for each injection by computing the proportions of retrogradely labeled neurons located in the auditory and STP areas with respect to number of labeled neurons constituting the established projection from the superior temporal sulci (STS) motion complex (middle temporal area, medial superior temporal, fundus of the superior temporal area). In peripheral area V1 the projection from auditory cortex corresponds to 9.5% of that of the STS motion complex and STP to 35% of that from the STS motion complex. Compared to peripheral area 17, central and paracentral area 17 showed considerably weaker inputs from auditory cortex (0.2–0.8%) but slightly more from STP cortex (3.5–6.1%). The present results show that the connectivity of area 17 is eccentricity dependent. Direct projections from auditory and STP cortex to peripheral area 17 have important consequences for higher visual functions of area 17, including multimodal integration at early stages of the visual cortical pathway.
0

Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex

Nikola Markov et al.Aug 24, 2013
+11
P
J
N
ABSTRACT The laminar location of the cell bodies and terminals of interareal connections determines the hierarchical structural organization of the cortex and has been intensively studied. However, we still have only a rudimentary understanding of the connectional principles of feedforward (FF) and feedback (FB) pathways. Quantitative analysis of retrograde tracers was used to extend the notion that the laminar distribution of neurons interconnecting visual areas provides an index of hierarchical distance (percentage of supragranular labeled neurons [SLN]). We show that: 1) SLN values constrain models of cortical hierarchy, revealing previously unsuspected areal relations; 2) SLN reflects the operation of a combinatorial distance rule acting differentially on sets of connections between areas; 3) Supragranular layers contain highly segregated bottom‐up and top‐down streams, both of which exhibit point‐to‐point connectivity. This contrasts with the infragranular layers, which contain diffuse bottom‐up and top‐down streams; 4) Cell filling of the parent neurons of FF and FB pathways provides further evidence of compartmentalization; 5) FF pathways have higher weights, cross fewer hierarchical levels, and are less numerous than FB pathways. Taken together, the present results suggest that cortical hierarchies are built from supra‐ and infragranular counterstreams. This compartmentalized dual counterstream organization allows point‐to‐point connectivity in both bottom‐up and top‐down directions. J. Comp. Neurol. 522:225–259, 2014. © 2013 Wiley Periodicals, Inc.
0

The Spectrotemporal Filter Mechanism of Auditory Selective Attention

Péter Lakatos et al.Feb 1, 2013
+3
M
G
P
Although we have convincing evidence that attention to auditory stimuli modulates neuronal responses at or before the level of primary auditory cortex (A1), the underlying physiological mechanisms are unknown. We found that attending to rhythmic auditory streams resulted in the entrainment of ongoing oscillatory activity reflecting rhythmic excitability fluctuations in A1. Strikingly, although the rhythm of the entrained oscillations in A1 neuronal ensembles reflected the temporal structure of the attended stream, the phase depended on the attended frequency content. Counter-phase entrainment across differently tuned A1 regions resulted in both the amplification and sharpening of responses at attended time points, in essence acting as a spectrotemporal filter mechanism. Our data suggest that selective attention generates a dynamically evolving model of attended auditory stimulus streams in the form of modulatory subthreshold oscillations across tonotopically organized neuronal ensembles in A1 that enhances the representation of attended stimuli.
0

Weight Consistency Specifies Regularities of Macaque Cortical Networks

Nikola Markov et al.Nov 2, 2010
+14
A
P
N
To what extent cortical pathways show significant weight differences and whether these differences are consistent across animals (thereby comprising robust connectivity profiles) is an important and unresolved neuroanatomical issue. Here we report a quantitative retrograde tracer analysis in the cynomolgus macaque monkey of the weight consistency of the afferents of cortical areas across brains via calculation of a weight index (fraction of labeled neurons, FLN). Injection in 8 cortical areas (3 occipital plus 5 in the other lobes) revealed a consistent pattern: small subcortical input (1.3% cumulative FLN), high local intrinsic connectivity (80% FLN), high-input form neighboring areas (15% cumulative FLN), and weak long-range corticocortical connectivity (3% cumulative FLN). Corticocortical FLN values of projections to areas V1, V2, and V4 showed heavy-tailed, lognormal distributions spanning 5 orders of magnitude that were consistent, demonstrating significant connectivity profiles. These results indicate that 1) connection weight heterogeneity plays an important role in determining cortical network specificity, 2) high investment in local projections highlights the importance of local processing, and 3) transmission of information across multiple hierarchy levels mainly involves pathways having low FLN values.
0

Flexible reset and entrainment of delta oscillations in primate primary auditory cortex: modeling and experiment

David Stanley et al.Oct 22, 2019
+4
B
A
D
Abstract Salient auditory stimuli typically exhibit rhythmic temporal patterns. A growing body of evidence suggests that, in primary auditory cortex (A1), attention is associated with entrainment of delta rhythms (1 – 4 Hz) by these auditory stimuli. It is thought that this entrainment involves phase reset of ongoing spontaneous oscillations in A1 by thalamus matrix afferents, but precise mechanisms are unknown. Furthermore, naturalistic stimuli can vary widely in terms of their rhythmicity: some cycles can be longer than others and frequency can drift over time. It is not clear how the auditory system accommodates this natural variability. We show that in rhesus macaque monkey A1 in vivo , bottom-up gamma (40 Hz) click trains influence ongoing spontaneous delta rhythms by inducing an initial delta-timescale transient response, followed by entrainment to gamma and suppression of delta. We then construct a computational model to reproduce this effect, showing that transient thalamus matrix activation can reset A1 delta oscillations by directly activating deep (layer 5) IB cells, promoting bursting, and beginning a new delta cycle. In contrast, long duration gamma-rhythmic input stimuli induce a steady-state containing entrainment of superficial RS and FS cells at gamma, and suppression of delta oscillations. This suppression is achieved in the model by two complementary pathways. First, long-duration thalamus matrix input causes IB cells to switch from bursting to sparse firing, which disrupts the IB bursts associated with delta. Second, thalamus core input activates deep FS cells (by way of layer 4), which fire at gamma frequency and actively inhibit the delta oscillator. Together, these two fundamental operations of reset and suppression can respectively advance and delay the phase of the delta oscillator, allowing it to follow rhythms exhibiting the type of variability found in the natural environment. We discuss these findings in relation to functional implications for speech processing. Author summary Neurons organize their firing into synchronous, rhythmic patterns. These neural oscillations have been shown to entrain to rhythmic stimuli in the external world, such as patterns of speech or patterns of movement. By entraining to a particular input stimulus, these oscillations are thought to help us attend to that stimulus and to exclude others. To understand how this synchronization emerges, we constructed a physiologically detailed mathematical model of the primary auditory cortex. By fitting this model to a variety of experimental data, we suggest fundamental mechanisms by which neurons of the auditory cortex can synchronize their activity to rhythmic external stimuli. This result will be useful for understanding the mechanism and limitations of oscillatory entrainment, which are thought to underlie the processing of naturalistic auditory inputs like speech or music. Furthermore, this model, though simplified, was shown to generalize and reproduce a wide range of experimental results, and can thus be used as a starting point for building more complex models of auditory cortex.
10

An open-access dataset of naturalistic viewing using simultaneous EEG-fMRI

Qawi Telesford et al.Nov 24, 2022
+12
T
E
Q
Abstract In this work, we present a dataset that combines functional magnetic imaging (fMRI) and electroencephalography (EEG) to use as a resource for understanding human brain function in these two imaging modalities. The dataset can also be used for optimizing preprocessing methods for simultaneously collected imaging data. The dataset includes simultaneously collected recordings from 22 individuals (ages: 23-51) across various visual and naturalistic stimuli. In addition, physiological, eye tracking, electrocardiography, and cognitive and behavioral data were collected along with this neuroimaging data. Visual tasks include a flickering checkerboard collected outside and inside the MRI scanner (EEG-only) and simultaneous EEG-fMRI recordings. Simultaneous recordings include rest, the visual paradigm Inscapes, and several short video movies representing naturalistic stimuli. Raw and preprocessed data are openly available to download. We present this dataset as part of an effort to provide open-access data to increase the opportunity for discoveries and understanding of the human brain and evaluate the correlation between electrical brain activity and blood oxygen level-dependent (BOLD) signals.
1

Dissociation of direct and peripheral transcranial magnetic stimulation effects in nonhuman primates

W.N.D. Perera et al.Dec 27, 2022
+8
S
I
W
ABSTRACT Transcranial magnetic stimulation (TMS) is a non-invasive brain stimulation method that is rapidly growing in popularity for studying causal brain-behavior relationships. However, its dose-dependent direct neural mechanisms, i.e., due to electric field or connectivity, and peripheral sensory co-stimulation effects remain debated. Understanding how TMS stimulation parameters affect brain responses is vital for the rational design of TMS protocols. Studying these mechanisms in humans is challenging due to the limited spatiotemporal resolution of available non-invasive neuroimaging methods. Here, we leverage invasive recordings of local field potentials in non-human primates to study TMS mesoscale responses. We demonstrate that early TMS-evoked potentials show a sigmoidal dose-response with stimulation intensity. We further show that stimulation responses are spatially specific. We employ several control conditions to dissociate direct neural responses from auditory and somatosensory co-activation. These results provide crucial evidence regarding TMS neural effects at the brain circuit level. Our findings are highly relevant for interpreting human TMS studies and biomarker developments for TMS target engagement in clinical applications.
0

Brain Charts for the Rhesus Macaque Lifespan

Samuel Alldritt et al.Aug 30, 2024
+96
R
J
S
Recent efforts to chart human brain growth across the lifespan using large-scale MRI data have provided reference standards for human brain development. However, similar models for nonhuman primate (NHP) growth are lacking. The rhesus macaque, a widely used NHP in translational neuroscience due to its similarities in brain anatomy, phylogenetics, cognitive, and social behaviors to humans, serves as an ideal NHP model. This study aimed to create normative growth charts for brain structure across the macaque lifespan, enhancing our understanding of neurodevelopment and aging, and facilitating cross-species translational research. Leveraging data from the PRIMatE Data Exchange (PRIME-DE) and other sources, we aggregated 1,522 MRI scans from 1,024 rhesus macaques. We mapped non-linear developmental trajectories for global and regional brain structural changes in volume, cortical thickness, and surface area over the lifespan. Our findings provided normative charts with centile scores for macaque brain structures and revealed key developmental milestones from prenatal stages to aging, highlighting both species-specific and comparable brain maturation patterns between macaques and humans. The charts offer a valuable resource for future NHP studies, particularly those with small sample sizes. Furthermore, the interactive open resource (https://interspeciesmap.childmind.org) supports cross-species comparisons to advance translational neuroscience research.
1

Experimental validation of computational models for the prediction of phase distribution during multi-channel transcranial alternating current stimulation

Sangjun Lee et al.Apr 8, 2023
+5
I
S
S
Abstract Transcranial alternating current stimulation (tACS) is a widely used noninvasive brain stimulation (NIBS) technique to affect neural activity. Neural oscillations exhibit phase-dependent associations with cognitive functions, and tools to manipulate local oscillatory phases can affect communication across remote brain regions. A recent study demonstrated that multi-channel tACS can generate electric fields with a phase gradient or traveling waves in the brain. Computational simulations using phasor algebra can predict the phase distribution inside the brain and aid in informing parameters in tACS experiments. However, experimental validation of computational models for multi-phase tACS is still lacking. Here, we develop such a framework for phasor simulation and evaluate its accuracy using in vivo recordings in nonhuman primates. We extract the phase and amplitude of electric fields from intracranial recordings in two monkeys during multi-channel tACS and compare them to those calculated by phasor analysis using finite element models. Our findings demonstrate that simulated phases correspond well to measured phases (r = 0.9). Further, we systematically evaluated the impact of accurate electrode placement on modeling and data agreement. Finally, our framework can predict the amplitude distribution in measurements given calibrated tissues’ conductivity. Our validated general framework for simulating multi-phase, multi-electrode tACS provides a streamlined tool for principled planning of multi-channel tACS experiments.
0

Delineating the macroscale areal organization of the macaque cortex in vivo

Ting Xu et al.Jun 26, 2017
+15
E
A
T
Complementing longstanding traditions centered around histology, functional magnetic resonance imaging approaches are rapidly maturing in their ability to delineate brain areal organization at the macroscale. In particular, automated approaches focused on the detection of gradient-based boundaries in functional connectivity (FC) properties between cortical areas have demonstrated the ability to characterize human brain organization at the individual level and recapitulate previously established cytoarchitectonic brain areas. The use of non-human primates (NHP) provides the opportunity to overcome critical barriers in the advancement of translational research. Here, we establish the data and scanning condition requirements for achieving reproducible, stable and internally valid areal parcellations at the individual levels, which have good correspondences with previously established postmortem areas; the inclusion of data from two independent imaging sites ensures the reproducibility of our findings. We demonstrate that highly reproducible areal organizations for fingerprinting can be achieved whether subjects were scanned under anesthesia or awake (rest, naturalistic viewing), though differences between awake and anesthetized states precluded the detection of individual differences across states. Individual differences were notably more stable across differing awake states. Comparison of awake and anesthetized states suggested a more nuanced picture of changes in connectivity for higher order association areas, as well as visual and motor cortex. These results establish feasibility and data requirements for the generation of reproducible individual-specific parcellations in NHP, as well as provide insights into the impact of scan state on findings.
Load More