JC
Jacob Corn
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
10
(10% Open Access)
Cited by:
4
h-index:
24
/
i10-index:
30
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
11

Identification of novel HPFH-like mutations by CRISPR base editing that elevates the expression of fetal hemoglobin

Nithin Ravi et al.Jul 1, 2020
ABSTRACT Switching hemoglobin synthesis from defective adult beta-globin to fetal gamma-globin is an effective strategy for the treatment of beta-hemoglobinopathies. Fetal hemoglobin expression is down-regulated in the postnatal period due to the interplay of transcription regulators with the HBG promoters. However, in the hereditary persistence of fetal hemoglobin (HPFH) condition, naturally occurring point mutations in the HBG promoter causes continued expression of fetal globin even during adulthood. Inspired by this natural phenomenon, we screened the proximal promoter of human HBG genes using adenine and cytosine base editors to identify other nucleotide substitutions that could potentially lead to elevated levels of fetal globin. Both the base editors efficiently and precisely edited at the target sites with a minimal generation of indels and no deletion of one of the duplicated HBG genes. Through systematic tiling across the HBG proximal promoter, we identified multiple novel target sites that resulted in a significant increase in fetal globin levels. Further, we individually validated the top eight potential target sites from both the base editors and observed robust elevation in the fetal globin levels up to 47 %, without any detrimental effects on erythroid differentiation. Our screening strategy resulted in the identification of multiple novel point mutations and also validated the known non-deletional HPFH mutations that could elevate the fetal globin expression at therapeutically relevant levels. Overall, our findings shed light on so far unknown regulatory elements within the HBG promoter that normally mediates fetal globin silencing and identify additional targets for therapeutic upregulation of fetal hemoglobin.
11
Citation4
0
Save
0

Controlled cycling and quiescence enables homology directed repair in engraftment-enriched adult hematopoietic stem and progenitor cells

Jiyung Shin et al.Apr 13, 2018
Hematopoietic stem cells (HSCs) are the source of all blood components, and genetic defects in these cells are causative of disorders ranging from severe combined immunodeficiency to sickle cell disease. However, genome editing of long-term repopulating HSCs to correct mutated alleles has been challenging. HSCs have the ability to either be quiescent or cycle, with the former linked to stemness and the latter involved in differentiation. Here we investigate the link between cell cycle status and genome editing outcomes at the causative codon for sickle cell disease in adult human CD34+ hematopoietic stem and progenitor cells (HSPCs). We show that quiescent HSPCs that are immunophenotypically enriched for engrafting stem cells predominantly repair Cas9-induced double strand breaks (DSBs) through an error-prone non-homologous end-joining (NHEJ) pathway and exhibit almost no homology directed repair (HDR). By contrast, non-quiescent cycling stem-enriched cells repair Cas9 DSBs through both error-prone NHEJ and fidelitous HDR. Pre-treating bulk CD34+ HSPCs with a combination of mTOR and GSK-3 inhibitors to induce quiescence results in complete loss of HDR in all cell subtypes. We used these compounds, which were initially developed to maintain HSCs in culture, to create a new strategy for editing adult human HSCs. CD34+ HSPCs are edited, allowed to briefly cycle to accumulate HDR alleles, and then placed back in quiescence to maintain stemness, resulting in 6-fold increase in HDR/NHEJ ratio in quiescent, stem-enriched cells. Our results reveal the fundamental tension between quiescence and editing in human HSPCs and suggests strategies to manipulate HSCs during therapeutic genome editing.
0

Discovery of an autoimmunity-associated IL2RA enhancer by unbiased targeting of transcriptional activation

Dimitre Simeonov et al.Dec 5, 2016
The majority of genetic variants associated with common human diseases map to enhancers, non-coding elements that shape cell type-specific transcriptional programs and responses to specific extracellular cues1-3. In order to understand the mechanisms by which non-coding genetic variation contributes to disease, systematic mapping of functional enhancers and their biological contexts is required. Here, we develop an unbiased discovery platform that can identify enhancers for a target gene without prior knowledge of their native functional context. We used tiled CRISPR activation (CRISPRa) to synthetically recruit transcription factors to sites across large genomic regions (>100 kilobases) surrounding two key autoimmunity risk loci, CD69 and IL2RA (interleukin-2 receptor alpha; CD25). We identified several CRISPRa responsive elements (CaREs) with stimulation-dependent enhancer activity, including an IL2RA enhancer that harbors an autoimmunity risk variant. Using engineered mouse models and genome editing of human primary T cells, we found that sequence perturbation of the disease-associated IL2RA enhancer does not block IL2RA expression, but rather delays the timing of gene activation in response to specific extracellular signals. This work develops an approach to rapidly identify functional enhancers within non-coding regions, decodes a key human autoimmunity association, and suggests a general mechanism by which genetic variation can cause immune dysfunction.
0

CRISPR-Cas9 interrogation of a putative fetal globin repressor in human erythroid cells.

Jennifer Chung et al.May 31, 2018
Sickle Cell Disease and beta-thalassemia, which are caused by defective or deficient adult beta-globin (HBB) respectively, are the most common serious genetic blood diseases in the world. Expression of the fetal beta-like globin, also known as gamma-globin, can ameliorate both disorders by serving in place of the adult beta-globin. Here we use CRISPR-Cas9 gene editing to explore a putative gamma-globin silencer region identified by comparison of naturally-occurring deletion mutations associated with up-regulated gamma-globin. We find that deletion of a 1.7 kb consensus element or select 350 bp sub-regions from bulk populations of cells increases levels of fetal hemoglobin (HbF) or gamma-globin. Screening of individual sgRNAs in one sub-region revealed three single guides that caused mild increases in gamma;-globin expression. However, clonal cell lines with the 1.7 kb region deleted did not up-regulate gamma-globin and neither did lines with either of two of sub-regions identified in the screen deleted. These data suggest that the region is not an autonomous gamma-globin silencer, and thus by itself is not a suitable therapeutic target in the beta-hemoglobinopathies.