JW
Jen‐Chyong Wang
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
598
h-index:
18
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders

Raymond Walters et al.Nov 19, 2018
Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest genome-wide association study to date of DSM-IV-diagnosed AD. Genome-wide data on 14,904 individuals with AD and 37,944 controls from 28 case–control and family-based studies were meta-analyzed, stratified by genetic ancestry (European, n = 46,568; African, n = 6,280). Independent, genome-wide significant effects of different ADH1B variants were identified in European (rs1229984; P = 9.8 × 10–13) and African ancestries (rs2066702; P = 2.2 × 10–9). Significant genetic correlations were observed with 17 phenotypes, including schizophrenia, attention deficit–hyperactivity disorder, depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and nonpathological drinking behaviors. Different functional variants in ADH1B (and elsewhere) in Europeans and Africans strongly affect risk for alcohol dependence. Dependence only partly genetically correlates with consumption, with strong correlations to other psychiatric disorders.
1
Citation577
0
Save
0

Trans-ancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders

Raymond Walters et al.Mar 10, 2018
Abstract Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest GWAS to date of DSM - IV diagnosed AD. Genome - wide data on 14,904 individuals with AD and 37,944 controls from 28 case / control and family - based studies were meta - analyzed, stratified by genetic ancestry (European, N = 46,568; African; N = 6,280). Independent, genome - wide significant effects of different ADH1B variants were identified in European (rs1229984; p = 9.8E - 13) and African ancestries (rs2066702; p = 2.2E - 9). Significant genetic correlations were observed with schizophrenia, ADHD, depression, and use of cigarettes and cannabis. There was only modest genetic correlation with alcohol consumption and inconsistent associations with problem drinking. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and non - pathological drinking behaviors.
0
Citation20
0
Save
0

Shared Genetic Risk between Eating Disorder- and Substance-Use-Related Phenotypes: Evidence from Genome-Wide Association Studies

Melissa Munn‐Chernoff et al.Aug 23, 2019
Eating disorders and substance use disorders frequently co-occur. Twin studies reveal shared genetic variance between liabilities to eating disorders and substance use, with the strongest associations between symptoms of bulimia nervosa (BN) and problem alcohol use (genetic correlation [rg], twin-based=0.23-0.53). We estimated the genetic correlation between eating disorder and substance use and disorder phenotypes using data from genome-wide association studies (GWAS). Four eating disorder phenotypes (anorexia nervosa [AN], AN with binge-eating, AN without binge-eating, and a BN factor score), and eight substance-use-related phenotypes (drinks per week, alcohol use disorder [AUD], smoking initiation, current smoking, cigarettes per day, nicotine dependence, cannabis initiation, and cannabis use disorder) from eight studies were included. Significant genetic correlations were adjusted for variants associated with major depressive disorder (MDD). Total sample sizes per phenotype ranged from ~2,400 to ~537,000 individuals. We used linkage disequilibrium score regression to calculate single nucleotide polymorphism-based genetic correlations between eating disorder and substance-use-related phenotypes. Significant positive genetic associations emerged between AUD and AN (rg=0.18; false discovery rate q=0.0006), cannabis initiation and AN (rg=0.23; q<0.0001), and cannabis initiation and AN with binge-eating (rg=0.27; q=0.0016). Conversely, significant negative genetic correlations were observed between three non-diagnostic smoking phenotypes (smoking initiation, current smoking, and cigarettes per day) and AN without binge-eating (rgs=-0.19 to -0.23; qs<0.04). The genetic correlation between AUD and AN was no longer significant after co-varying for MDD loci. The patterns of association between eating disorder- and substance-use-related phenotypes highlights the potentially complex and substance-specific relationships between these behaviors.
0

Analysis of whole genome-transcriptomic organization in brain to identify genes associated with alcoholism

Manav Kapoor et al.Dec 19, 2018
Alcohol exposure triggers changes in gene expression and biological pathways in human brain. We explored alterations in gene expression in the Pre-Frontal Cortex (PFC) of 65 alcoholics and 73 controls of European descent, and identified 129 genes that showed altered expression (FDR < 0.05) in subjects with alcohol dependence. Differentially expressed genes were enriched for pathways related to interferon signaling and Growth Arrest and DNA Damage-inducible 45 (GADD45) signaling. A coexpression module (thistle2) identified by weighted gene co-expression network analysis (WGCNA) was significantly correlated with alcohol dependence, alcohol consumption, and AUDIT scores. Genes in the thistle2 module were enriched with genes related to calcium signaling pathways and showed significant downregulation of these pathways, as well as enrichment for biological processes related to nicotine response and opioid signaling. A second module (brown4) showed significant upregulation of pathways related to immune signaling. Expression quantitative trait loci (eQTLs) for genes in the brown4 module were also enriched for genetic associations with alcohol dependence and alcohol consumption in large genome-wide studies included in the Psychiatric Genetic Consortium and the UK Biobank alcohol consumption dataset. By leveraging multi-omics data, this transcriptome analysis has identified genes and biological pathways that could provide insight for identifying therapeutic targets for alcohol dependence.