RS
Roberto Salomón
Author with expertise in Global Forest Drought Response and Climate Change
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
334
h-index:
19
/
i10-index:
32
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The fate of carbon in a mature forest under carbon dioxide enrichment

Mingkai Jiang et al.Jul 11, 2019
Abstract Atmospheric carbon dioxide enrichment (eCO 2 ) can enhance plant carbon uptake and growth 1,2,3,4,5 , thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO 2 concentration 6 . While evidence gathered from young aggrading forests has generally indicated a strong CO 2 fertilization effect on biomass growth 3,4,5 , it is unclear whether mature forests respond to eCO 2 in a similar way. In mature trees and forest stands 7,8,9,10 , photosynthetic uptake has been found to increase under eCO 2 without any apparent accompanying growth response, leaving an open question about the fate of additional carbon fixed under eCO 2 4, 5, 7,8,9,10,11 . Here, using data from the first ecosystem-scale Free-Air CO 2 Enrichment (FACE) experiment in a mature forest, we constructed a comprehensive ecosystem carbon budget to track the fate of carbon as the forest responds to four years of eCO 2 exposure. We show that, although the eCO 2 treatment of ambient +150 ppm (+38%) induced a 12% (+247 gCm -2 yr -1 ) increase in carbon uptake through gross primary production, this additional carbon uptake did not lead to increased carbon sequestration at the ecosystem level. Instead, the majority of the extra carbon was emitted back into the atmosphere via several respiratory fluxes, with increased soil respiration alone contributing ∼50% of the total uptake surplus. Our results call into question the predominant thinking that the capacity of forests to act as carbon sinks will be generally enhanced under eCO 2 , and challenge the efficacy of climate mitigation strategies that rely on CO 2 fertilization as a driver of increased carbon sinks in standing forests and afforestation projects.
0
Paper
Citation20
0
Save
0

Nearly instantaneous stem diameter response to fluctuations in the atmospheric water demand

Roberto Salomón et al.Sep 17, 2024
Abstract Changes in vapour pressure deficit (VPD) can lead to the depletion and replenishment of stem water pools to buffer water potential variations in the xylem. Yet, the precise velocity at which stem water pools track environmental cues remains poorly explored. Nine eucalyptus seedlings grown in a glasshouse experienced high-frequency environmental oscillations, and their stem radial variations (ΔR) were monitored at a 30-second temporal resolution in upper and lower stem locations and on the bark and xylem. The stem ΔR response to VPD changes was nearly instantaneous (&lt; 1 minute), while temperature lagged behind stem ΔR. No temporal differences in the stem ΔR response were observed between locations. Punctual gravimetric measurements confirmed the synchrony between transpiration and stem ΔR dynamics. These results indicate (i) that stem-stored water can respond to the atmospheric evaporative demand much faster than commonly assumed and (ii) that the origin of the water released to the transpiration stream seems critical in determining time lags in stem water pool dynamics. Near-zero time lags may be explained by the high elasticity of eucalyptus woody tissues and the predominant water use from the xylem, circumventing the hydraulic radial barriers to water flow from/to the outer tissues.