RS
Rabie Saidi
Author with expertise in RNA Sequencing Data Analysis
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
9,610
h-index:
16
/
i10-index:
22
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

UniProt: the universal protein knowledgebase in 2021

Alex Bateman et al.Nov 2, 2020
The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.
0
Citation5,752
0
Save
0

UniProt: the Universal Protein Knowledgebase in 2023

Alex Bateman et al.Nov 21, 2022
Abstract The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this publication we describe enhancements made to our data processing pipeline and to our website to adapt to an ever-increasing information content. The number of sequences in UniProtKB has risen to over 227 million and we are working towards including a reference proteome for each taxonomic group. We continue to extract detailed annotations from the literature to update or create reviewed entries, while unreviewed entries are supplemented with annotations provided by automated systems using a variety of machine-learning techniques. In addition, the scientific community continues their contributions of publications and annotations to UniProt entries of their interest. Finally, we describe our new website (https://www.uniprot.org/), designed to enhance our users’ experience and make our data easily accessible to the research community. This interface includes access to AlphaFold structures for more than 85% of all entries as well as improved visualisations for subcellular localisation of proteins.
0
Citation3,510
0
Save
1

The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

Naihui Zhou et al.Nov 19, 2019
Abstract Background The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. Results Here, we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility. We further performed targeted assays on selected genes in Drosophila melanogaster , which we suspected of being involved in long-term memory. Conclusion We conclude that while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than the expectations set by baseline methods in C. albicans and D. melanogaster , it leaves considerable room and need for improvement. Finally, we report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function prediction, and our ability to manage big data in the era of large experimental screens.
1
Citation346
0
Save
12

CROssBAR: Comprehensive Resource of Biomedical Relations with Deep Learning Applications and Knowledge Graph Representations

Tunca Doğan et al.Sep 15, 2020
Abstract Systemic analysis of available large-scale biological and biomedical data is critical for developing novel and effective treatment approaches against both complex and infectious diseases. Owing to the fact that different sections of the biomedical data is produced by different organizations/institutions using various types of technologies, the data are scattered across individual computational resources, without any explicit relations/connections to each other, which greatly hinders the comprehensive multi-omics-based analysis of data. We aimed to address this issue by constructing a new biological and biomedical data resource, CROssBAR, a comprehensive system that integrates large-scale biomedical data from various resources and store them in a new NoSQL database, enrich these data with deep-learning-based prediction of relations between numerous biomedical entities, rigorously analyse the enriched data to obtain biologically meaningful modules and display them to users via easy-to-interpret, interactive and heterogenous knowledge graph (KG) representations within an open access, user-friendly and online web-service at https://crossbar.kansil.org . As a use-case study, we constructed CROssBAR COVID-19 KGs (available at: https://crossbar.kansil.org/covid_main.php ) that incorporate relevant virus and host genes/proteins, interactions, pathways, phenotypes and other diseases, as well as known and completely new predicted drugs/compounds. Our COVID-19 graphs can be utilized for a systems-level evaluation of relevant virus-host protein interactions, mechanisms, phenotypic implications and potential interventions.
12
Paper
Citation2
0
Save
0

The CAFA challenge reports improved protein function prediction and new functional annotations for hundreds of genes through experimental screens

Naihui Zhou et al.May 29, 2019
The Critical Assessment of Functional Annotation (CAFA) is an ongoing, global, community-driven effort to evaluate and improve the computational annotation of protein function. Here we report on the results of the third CAFA challenge, CAFA3, that featured an expanded analysis over the previous CAFA rounds, both in terms of volume of data analyzed and the types of analysis performed. In a novel and major new development, computational predictions and assessment goals drove some of the experimental assays, resulting in new functional annotations for more than 1000 genes. Specifically, we performed experimental whole-genome mutation screening in Candida albicans and Pseudomonas aureginosa genomes, which provided us with genome-wide experimental data for genes associated with biofilm formation and motility P. aureginosa only). We further performed targeted assays on selected genes in Drosophila melanogaster, which we suspected of being involved in long-term memory. We conclude that, while predictions of the molecular function and biological process annotations have slightly improved over time, those of the cellular component have not. Term-centric prediction of experimental annotations remains equally challenging; although the performance of the top methods is significantly better than expectations set by baseline methods in C. albicans and D. melanogaster, it leaves considerable room and need for improvement. We finally report that the CAFA community now involves a broad range of participants with expertise in bioinformatics, biological experimentation, biocuration, and bio-ontologies, working together to improve functional annotation, computational function