LB
Larbi Bedrani
Author with expertise in Diversity and Function of Gut Microbiome
University of Toronto, Lunenfeld-Tanenbaum Research Institute, Sinai Health System
+ 4 more
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
2
(50% Open Access)
Cited by:
11
h-index:
11
/
i10-index:
14
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
3

Large-scale association analyses identify host factors influencing human gut microbiome composition

Alexander Kurilshikov et al.Dec 29, 2020
+100
R
C
A
Abstract To study the effect of host genetics on gut microbiome composition, the MiBioGen consortium curated and analyzed genome-wide genotypes and 16S fecal microbiome data from 18,340 individuals (24 cohorts). Microbial composition showed high variability across cohorts: only 9 out of 410 genera were detected in more than 95% samples. A genome-wide association study (GWAS) of host genetic variation in relation to microbial taxa identified 31 loci affecting microbiome at a genome-wide significant (P<5×10 −8 ) threshold. One locus, the lactase ( LCT ) gene locus, reached study-wide significance (GWAS signal P=1.28×10 −20 ), and it showed an age-dependent association with Bifidobacterium abundance. Other associations were suggestive (1.95×10 −10 <P<5×10 −8 ) but enriched for taxa showing high heritability and for genes expressed in the intestine and brain. A phenome-wide association study and Mendelian randomization identified enrichment of microbiome trait loci in the metabolic, nutrition and environment domains and suggested the microbiome has causal effects in ulcerative colitis and rheumatoid arthritis.
0

Characterizing and predicting cyanobacterial blooms in an 8-year amplicon sequencing time-course

Nicolas Tromas et al.May 7, 2020
+5
L
N
N
Cyanobacterial blooms occur in lakes worldwide, producing toxins that pose a serious public health threat. Eutrophication caused by human activities and warmer temperatures both contribute to blooms, but it is still difficult to predict precisely when and where blooms will occur. One reason that prediction is so difficult is that blooms can be caused by different species or genera of cyanobacteria, which may interact with other bacteria and respond to a variety of environmental cues. Here we used a deep 16S amplicon sequencing approach to profile the bacterial community in eutrophic Lake Champlain over time, to characterize the composition and repeatability of cyanobacterial blooms, and to determine the potential for blooms to be predicted based on time-course sequence data. Our analysis, based on 135 samples between 2006 and 2013, spans multiple bloom events. We found that bloom events significantly alter the bacterial community without reducing overall diversity, suggesting that a distinct microbial community -- including non-cyanobacteria -- prospers during the bloom. We also observed that the community changes cyclically over the course of a year, with a repeatable pattern from year to year. This suggests that, in principle, bloom events are predictable. We used probabilistic assemblages of OTUs to characterize the bloom-associated community, and to classify samples into bloom or non-bloom categories, achieving up to 92% classification accuracy (86% after excluding cyanobacterial sequences). Finally, using symbolic regression, we were able to predict the start date of a bloom with 78-92% accuracy (depending on the data used for model training), and found that sequence data was a better predictor than environmental variables.