AM
Alexander Myasnikov
Author with expertise in Macromolecular Crystallography Techniques
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
26
h-index:
26
/
i10-index:
38
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
26

Cryo-EM reveals the dynamic interplay between mitochondrial Hsp90 and SdhB folding intermediates

Yanxin Liu et al.Oct 6, 2020
+2
M
D
Y
Abstract TRAP1 is a mitochondrion specific Hsp90, a ubiquitous chaperone family that mediates the folding and maturation of hundreds of “client” proteins. Through the interaction with client proteins, TRAP1 regulates mitochondrial protein homeostasis, oxidative phosphorylation/glycolysis balance, and plays a critical role in mitochondrial dynamics and disease. However, the molecular mechanism of client protein recognition and remodeling by TRAP1 remains elusive. Here we established the succinate dehydrogenase B subunit (SdhB) from mitochondrial complex II as a client protein for TRAP1 amenable to detailed biochemical and structural investigation. SdhB accelerates the rate of TRAP1 dimer closure and ATP hydrolysis by 5-fold. Cryo-EM structures of the TRAP1:SdhB complex show TRAP1 stabilizes SdhB folding intermediates by trapping an SdhB segment in the TRAP1 lumen. Unexpectedly, client protein binding induces an asymmetric to symmetric transition in the TRAP1 closed state. Our results highlight a client binding mechanism conserved throughout Hsp90s that transcends the need for cochaperones and provide molecular insights into how TRAP1 modulates protein folding within mitochondria. Our structures also suggest a potential role for TRAP1 in Fe-S cluster biogenesis and mitochondrial protein import and will guide small molecule development for therapeutic intervention in specific TRAP1 client interactions.
26
Citation13
0
Save
7

GR chaperone cycle mechanism revealed by cryo-EM: inactivation of GR by GR:Hsp90:Hsp70:Hop client-loading complex

Ray Wang et al.Nov 5, 2020
+3
E
C
R
Abstract Maintaining a healthy proteome is fundamental for organism survival 1,2 . Integral to this are Hsp90 and Hsp70 molecular chaperones that together facilitate the folding, remodeling and maturation of Hsp90’s many “client” proteins 3–7 . The glucocorticoid receptor (GR) is a model client strictly dependent upon Hsp90/Hsp70 for activity 8–13 . Chaperoning GR involves a cycle of inactivation by Hsp70, formation of an inactive GR:Hsp90:Hsp70:Hop “loading” complex, conversion to an active GR:Hsp90:p23 “maturation” complex, and subsequent GR release 14 . Unfortunately, a molecular understanding of this intricate chaperone cycle is lacking for any client. Here, we report the cryo-EM structure of the GR loading complex, in which Hsp70 loads GR onto Hsp90, revealing the molecular basis of direct Hsp90/Hsp70 coordination. The structure reveals two Hsp70s—one delivering GR and the other scaffolding Hop. Unexpectedly, the Hop cochaperone interacts with all components of the complex including GR, poising Hsp90 for subsequent ATP hydrolysis. GR is partially unfolded and recognized via an extended binding pocket composed of Hsp90, Hsp70 and Hop, revealing the mechanism of GR loading and inactivation. Together with the GR maturation complex (Noddings et al., 2020), we present the first complete molecular mechanism of chaperone-dependent client remodeling, establishing general principles of client recognition, inhibition, transfer and activation.
7
Citation12
0
Save
0

Structural basis of eIF2B-catalyzed GDP exchange and phosphoregulation by the integrated stress response

Aditya Anand et al.Dec 22, 2018
+7
H
L
A
The integrated stress response (ISR) tunes the rate of protein synthesis. Control is exerted by phosphorylation of the general translation initiation factor eIF2. eIF2 is a GTPase, that becomes activated by eIF2B, a large two-fold symmetric and heterodecameric complex that functions as eIF2's dedicated nucleotide exchange factor. Phosphorylation converts eIF2 from substrate into an inhibitor of eIF2B. We report cryoEM structures of eIF2 bound to eIF2B in the dephosphorylated state. The structures reveal that the eIF2B decamer is a static platform upon which one or two flexible eIF2 trimers bind and align with eIF2B's catalytic centers to catalyze guanine nucleotide exchange. Phosphorylation refolds eIF2, allowing it to contact eIF2B at a different interface and, we surmise, thereby sequesters it into a non-productive complex.
0
Citation1
0
Save
0

Allosteric coupling between alpha-rings of the 20S proteasome

Zanlin Yu et al.Nov 7, 2019
+5
R
Y
Z
The proteasomal machinery performs essential regulated protein degradation in eukaryotes. Classic proteasomes are symmetric, with a regulatory ATPase docked at each end of the cylindrical 20S. Asymmetric complexes are also present in cells, either with a single ATPase or with an ATPase and non-ATPase at two opposite ends. The mechanism that populates these different proteasomal complexes is unknown. Using archaea homologs, we constructed asymmetric forms of proteasomes. We demonstrate that the gate conformation of two opposite ends of 20S are coupled: binding one ATPase opens a gate locally, and also the remote opposite gate allosterically. Such allosteric coupling leads to cooperative binding of proteasomal ATPases to 20S, and promotes formation of proteasomes symmetrically configured with two identical ATPases. It may also promote formation of asymmetric complexes with an ATPase and a non-ATPase at opposite ends. We propose that in eukaryotes a similar mechanism regulates the composition of the proteasomal population.
0

The archaeal highly thermostable GH35 family β‐galactosidase DGal has a unique seven domain protein fold

Yury Kil et al.Jun 2, 2024
+6
В
E
Y
The most extensively studied β-d-galactosidases (EC3.2.1.23) belonging to four glycoside hydrolase (GH) families 1, 2, 35, and 42 are widely distributed among Bacteria, Archaea and Eukaryotes. Here, we report a novel GH35 family β-galactosidase from the hyperthermophilic Thermoprotei archaeon Desulfurococcus amylolyticus (DaβGal). Unlike fungal monomeric six-domain β-galactosidases, the DaβGal enzyme is a dimer; it has an extra jelly roll domain D7 and three composite domains (D4, D5, and D6) that are formed by the distantly located polypeptide chain regions. The enzyme possesses a high specificity for β-d-galactopyranosides, and its distinguishing feature is the ability to cleave pNP-β-d-fucopyranoside. DaβGal efficiently catalyzes the hydrolysis of lactose at high temperatures, remains stable and active at 65 °С, and retains activity at 95 °С with a half-life time value equal to 73 min. These properties make archaeal DaβGal a more attractive candidate for biotechnology than the widely used fungal β-galactosidases.