MM
Michael Munson
Author with expertise in Role of Autophagy in Disease and Health
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
688
h-index:
17
/
i10-index:
24
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase

Ružica Bago et al.Sep 2, 2014
The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K.
19

Time evolution of PEG-shedding and serum protein coronation determines the cell uptake kinetics and delivery of lipid nanoparticle formulated mRNA

Marcel Garcia et al.Aug 20, 2021
Abstract Development of efficient lipid nanoparticle (LNP) vectors remains a major challenge towards broad clinical translation of RNA therapeutics. New lipids will be required, but also better understanding LNP interactions with the biological environment. Herein, we model protein corona formation on PEG-ylated DLin-MC3-DMA LNPs and identify time-dependent maturation steps that critically unlock their cellular uptake and mRNA delivery. Uptake requires active serum proteins and precedes after a significant (∼2 hours) lag-time, which we show can be eliminated by pre-incubating LNPs for 3-4 hours in serum-containing media. This indicates an important role of protein corona maturation for the pharmacokinetic effects of these LNPs. We show, using single-nanoparticle imaging, NMR diffusometry, SANS, and proteomics, that the LNPs, upon serum exposure, undergo rapid PEG-shedding (∼30 minutes), followed by a slower rearrangement of the adsorbed protein layer. The PEG-shedding coincides in time with high surface abundance of Apolipoprotein A-II, whereas the LNPs preferentially bind Apolipoprotein E when their maximum uptake-competent state is reached. Finally, we show that pre-incubation of the LNPs enables rapid uptake and allows pulse-chase video-microscopy colocalization experiments with sufficiently short pulse durations to gain improved mechanistic understanding of how intracellular trafficking events determine delivery efficacy, emphasizing early endosomes as important delivery-mediating compartments.
19
Paper
Citation12
0
Save