RW
Ryan White
Author with expertise in Molecular Mechanisms of DNA Damage Response
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
20
h-index:
15
/
i10-index:
18
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
62

Fanconi Anemia Pathway Deficiency Drives Copy Number Variation in Squamous Cell Carcinomas

Andrew Webster et al.Aug 16, 2021
+41
K
M
A
Fanconi anemia (FA), a model syndrome of genome instability, is caused by a deficiency in DNA interstrand crosslink (ICL) repair resulting in chromosome breakage 1–3 . The FA repair pathway comprises at least 22 FANC proteins including BRCA1 and BRCA2 4–6 , and protects against carcinogenic endogenous and exogenous aldehydes 7–10 . Individuals with FA are hundreds to thousands-fold more likely to develop head and neck (HNSCC), esophageal and anogenital squamous cell carcinomas (SCCs) with a median onset age of 31 years 11 . The aggressive nature of these tumors and poor patient tolerance of platinum and radiation-based therapy have been associated with short survival in FA 11–16 . Molecular studies of SCCs from individuals with FA (FA SCCs) have been limited, and it is unclear how they relate to sporadic HNSCCs primarily driven by tobacco and alcohol exposure or human papillomavirus (HPV) infection 17 . Here, by sequencing FA SCCs, we demonstrate that the primary genomic signature of FA-deficiency is the presence of a high number of structural variants (SVs). SVs are enriched for small deletions, unbalanced translocations, and fold-back inversions that arise in the context of TP53 loss. The SV breakpoints preferentially localize to early replicating regions, common fragile sites, tandem repeats, and SINE elements. SVs are often connected forming complex rearrangements. Resultant genomic instability underlies elevated copy number alteration (CNA) rates of key HNSCC-associated genes, including PIK3CA, MYC, CSMD1, PTPRD, YAP1, MXD4, and EGFR. In contrast to sporadic HNSCC, we find no evidence of HPV infection in FA HNSCC, although positive cases were identified in gynecologic tumors. A murine allograft model of FA pathway-deficient SCC was enriched in SVs, exhibited dramatic tumor growth advantage, more rapid epithelial-to-mesenchymal transition (EMT), and enhanced autonomous inflammatory signaling when compared to an FA pathway-proficient model. In light of the protective role of the FA pathway against SV formation uncovered here, and recent findings of FA pathway insufficiency in the setting of increased formaldehyde load resulting in hematopoietic stem cell failure and carcinogenesis 18–20 , we propose that high copy-number instability in sporadic HNSCC may result from functional overload of the FA pathway by endogenous and exogenous DNA crosslinking agents. Our work lays the foundation for improved FA patient treatment and demonstrates that FA SCC is a powerful model to study tumorigenesis resulting from DNA crosslinking damage.
62
Citation11
0
Save
0

CENP-A chromatin prevents replication stress at centromeres to avoid structural aneuploidy

Simona Giunta et al.Sep 1, 2020
+9
R
S
S
Abstract Chromosome segregation relies on centromeres, yet their repetitive DNA is often prone to aberrant rearrangements under pathological conditions. Factors that maintain centromere integrity to prevent centromere-associated chromosome translocations are unknown. Here, we demonstrate the importance of the centromere-specific histone H3 variant CENP-A in safeguarding DNA replication of alpha-satellite repeats to prevent structural aneuploidy. Rapid removal of CENP-A in S-phase, but not other cell cycle stages, caused accumulation of R-loops with increased centromeric transcripts, and interfered with replication fork progression. Replication without CENP-A causes recombination at alpha-satellites in an R-loop-dependent manner, unfinished replication and anaphase bridges. In turn, chromosome breakage and translocations arise specifically at centromeric regions. Our findings provide insights into how specialized centromeric chromatin maintains the integrity of transcribed noncoding repetitive DNA during S-phase. Abstract Figure
0
Citation4
0
Save
21

ALDH9A1 Deficiency as a Source of Endogenous DNA Damage that Requires Repair by the Fanconi Anemia Pathway

Moonjung Jung et al.May 27, 2022
+18
A
T
M
Abstract Fanconi anemia (FA) pathway is required for the repair of DNA interstrand crosslinks (ICL). ICLs are caused by genotoxins, such as chemotherapeutic agents or reactive aldehydes. Inappropriately repaired ICLs contribute to hematopoietic stem cell (HSC) failure and tumorigenesis. While endogenous acetaldehyde and formaldehyde are known to induce HSC failure and leukemia in humans with FA, the effects of other toxic metabolites in FA pathogenesis have not been systematically investigated. Using a metabolism-focused CRISPR screen, we found that ALDH9A1 deficiency causes synthetic lethality in FA pathway-deficient cells. Combined deficiency of ALDH9A1 and FANCD2 causes genomic instability, apoptosis, and decreased hematopoietic colony formation. Fanca −/− Aldh9a1 −/− mice exhibited an increased incidence of ovarian tumors. A suppressor CRISPR screen revealed that the loss of ATP13A3, a polyamine transporter, resulted in improved survival of FANCD2 −/− ALDH9A1 −/− cells. These findings implicate high intracellular polyamines and the resulting 3-aminopropanal or acrolein in the pathogenesis of FA. In addition, we find that ALDH9A1 variants may be modifying disease onset in FA patients. Statement of Significance ALDH9A1 deficiency is a previously unrecognized source of endogenous DNA damage. If not repaired by the Fanconi anemia pathway, such damage leads to increased genomic instability and tumorigenesis. Limiting substrates that accumulate when ALDH9A1 is absent can reduce aldehyde production and rescue synthetic lethality in the combined deficiency of ALDH9A1/FANCD2.
21
Citation4
0
Save
0

DrugMap: A quantitative pan-cancer analysis of cysteine ligandability

Mariko Takahashi et al.Oct 23, 2023
+66
S
H
M
Abstract Cysteine-focused chemical proteomic platforms have accelerated the clinical development of covalent inhibitors of a wide-range of targets in cancer. However, how different oncogenic contexts influence cysteine targeting remains unknown. To address this question, we have developed DrugMap , an atlas of cysteine ligandability compiled across 416 cancer cell lines. We unexpectedly find that cysteine ligandability varies across cancer cell lines, and we attribute this to differences in cellular redox states, protein conformational changes, and genetic mutations. Leveraging these findings, we identify actionable cysteines in NFκB1 and SOX10 and develop corresponding covalent ligands that block the activity of these transcription factors. We demonstrate that the NFκB1 probe blocks DNA binding, whereas the SOX10 ligand increases SOX10-SOX10 interactions and disrupts melanoma transcriptional signaling. Our findings reveal heterogeneity in cysteine ligandability across cancers, pinpoint cell-intrinsic features driving cysteine targeting, and illustrate the use of covalent probes to disrupt oncogenic transcription factor activity.
0
Citation1
0
Save