JS
José Sammartino
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(100% Open Access)
Cited by:
18
h-index:
21
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
858

Immunity to SARS-CoV-2 up to 15 months after infection

Harold Marcotte et al.Oct 11, 2021
Summary Background Information concerning the longevity of immunity to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) following natural infection may have considerable implications for durability of immunity induced by vaccines. Here, we monitored the SARS-CoV-2 specific immune response in convalescent coronavirus disease-2019 (COVID-19) patients up to 15 months after symptoms onset. Methods The levels of anti-spike and anti-receptor binding domain antibodies and neutralizing activities were tested in a total of 188 samples from 136 convalescent patients who experience mild to critical COVID-19. Specific memory B and T cell responses were measured in 76 peripheral blood mononuclear cell samples collected from 54 patients. Twenty-three vaccinated individuals were included for comparison. Findings Following a peak at day 15-28 post-infection, the IgG antibody response and plasma neutralizing titers gradually decreased over time but stabilized after 6 months. Plasma neutralizing activity against G614 was still detected in 87% of the patients at 6-15 months. Compared to G614, the median neutralizing titers against Beta, Gamma and Delta variants in plasma collected at early (15-103 days) and late (9-15 month) convalescence were 16- and 8-fold lower, respectively. SARS-CoV-2-specific memory B and T cells reached a peak at 3-6 months and persisted in the majority of patients up to 15 months although a significant decrease in specific T cells was observed between 6 and 15 months. Conclusion The data suggest that antiviral specific immunity especially memory B cells in COVID-19 convalescent patients is long-lasting, but some variants of concern, including the fast-spreading Delta variant, may at least partially escape the neutralizing activity of plasma antibodies. Funding EU-ATAC consortium, the Italian Ministry of Health, the Swedish Research Council, SciLifeLab, and KAW.
858
Citation10
0
Save
7

SARS-CoV-2 S1 Subunit Booster Vaccination Elicits Robust Humoral Immune Responses in Aged Mice

Eun Kim et al.Oct 26, 2022
Abstract Currently approved COVID-19 vaccines prevent symptomatic infection, hospitalization, and death of the disease. However, the emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants raises concerns of reduced vaccine effectiveness and increased risk of infection. Repeated homologous booster in elderly individuals and immunocompromised patients is considered to solve severe form of disease caused by new SARS-CoV-2 variants but cannot protect completely against breakthrough infection. In our previous study we assessed the immunogenicity of an adenovirus-based vaccine expressing SARS-CoV-2-S1 (Ad5.S1) in mice, resulting in that a single immunization with Ad5.S1, via subcutaneously injection or intranasal delivery, induced robust humoral and cellular immune responses [1]. As a follow up study, here we showed that vaccinated mice had high titers of anti-S1 antibodies at one year after vaccination compared to PBS immunized mice. Furthermore, one booster dose of non-adjuvanted recombinant S1Beta (rS1Beta) subunit vaccine was effective in stimulating strong long-lived S1-specific immune responses and inducing significantly high neutralizing antibodies against the Wuhan, Beta, and Delta strain with 3.6- to 19.5-fold change increases. Importantly, the booster dose elicits cross-reactive antibody responses resulting in ACE2 binding inhibition against spike of SARS-CoV-2 variants (Wuhan, Alpha, Beta, Gamma, Delta, Zeta, Kappa, New York, India) as early as two-week post-boost injection, persisting over 28 weeks after a booster vaccination. Interestingly, levels of neutralizing antibodies were correlated with not only level of S1-binding IgG but also level of ACE2 inhibition in the before- and after-booster serum samples. Our findings show that S1 recombinant protein subunit vaccine candidate as a booster has potential to offer cross-neutralization against broad variants, and has important implications for vaccine control of new emerging breakthrough SARS-CoV-2 variants in elderly individuals primed with adenovirus-based vaccine like AZD1222 and Ad26.COV2.S.
7
Citation3
0
Save
6

Tetravalent SARS-CoV-2 S1 Subunit Protein Vaccination Elicits Robust Humoral and Cellular Immune Responses in SIV-Infected Rhesus Macaque Controllers

Muhammad Khan et al.Mar 16, 2023
The COVID-19 pandemic has highlighted the need for safe and effective vaccines to be rapidly developed and distributed worldwide, especially considering the emergence of new SARS-CoV-2 variants. Protein subunit vaccines have emerged as a promising approach due to their proven safety record and ability to elicit robust immune responses. In this study, we evaluated the immunogenicity and efficacy of an adjuvanted tetravalent S1 subunit protein COVID-19 vaccine candidate composed of the Wuhan, B.1.1.7 variant, B.1.351 variant, and P.1 variant spike proteins in a nonhuman primate model with controlled SIVsab infection. The vaccine candidate induced both humoral and cellular immune responses, with T- and B cell responses mainly peaking post-boost immunization. The vaccine also elicited neutralizing and cross-reactive antibodies, ACE2 blocking antibodies, and T-cell responses, including spike specific CD4+ T cells. Importantly, the vaccine candidate was able to generate Omicron variant spike binding and ACE2 blocking antibodies without specifically vaccinating with Omicron, suggesting potential broad protection against emerging variants. The tetravalent composition of the vaccine candidate has significant implications for COVID-19 vaccine development and implementation, providing broad antibody responses against numerous SARS-CoV-2 variants.
4

Conversion of monoclonal IgG to dimeric and secretory IgA restores neutralizing ability and prevents infection of Omicron lineages

Harold Marcotte et al.Apr 19, 2023
Abstract The emergence of Omicron lineages and descendent subvariants continues to present a severe threat to the effectiveness of vaccines and therapeutic antibodies. We have previously suggested that an insufficient mucosal IgA response induced by the mRNA vaccines is associated with a surge in breakthrough infections. Here, we further show that the intramuscular mRNA and/or inactivated vaccines cannot sufficiently boost the mucosal sIgA response in uninfected individuals, particularly against the Omicron variant. We thus engineered and characterized recombinant monomeric, dimeric and secretory IgA1 antibodies derived from four neutralizing IgG monoclonal antibodies targeting the receptor-binding domain of the spike protein (01A05, rmAb23, DXP-604 and XG014). Compared to their parental IgG antibodies, dimeric and secretory IgA1 antibodies showed a higher neutralizing activity against different variants of concern (VOCs), in part due to an increased avidity. Importantly, the dimeric or secretory IgA1 form of the DXP-604 antibody significantly outperformed its parental IgG antibody, and neutralized the Omicron lineages BA.1, BA.2 and BA.4/5 with a 50-150-fold increase in potency, reaching the level of the most potent monoclonal antibodies described till date. In hACE2 transgenic mice, a single intranasal dose of the dimeric IgA DXP-604 conferred prophylactic and therapeutic protection against Omicron BA.5. Conversion of IgA and dimerization further enhanced or restored the neutralizing ability against the emerging Omicron sub-variants (DXP-604 for BQ.1, BQ.1.1 and BA2.75; 01A05 for BA2.75, BA.2.75.2 and XBB.1). Thus, dimeric or secretory IgA delivered by nasal administration may potentially be exploited for the treatment and prevention of Omicron infection, thereby providing an alternative tool for combating immune evasion by subvariants and, potentially, future VOCs. One Sentence Summary Engineered dimeric and secretory IgA1 neutralized Omicron variant with higher potency than parental IgG.
1

The veterinary anti-parasitic selamectin is a novel inhibitor of the mycobacterial DprE1 enzyme

José Ezquerra-Aznárez et al.Dec 4, 2021
Abstract Avermectins are macrocyclic lactones with anthelmintic activity. Recently, they were found to be effective against Mycobacterium tuberculosis , which accounts for one third of the worldwide deaths from antimicrobial resistance. However, their anti-mycobacterial mode of action remains to be elucidated. The activity of selamectin was determined against a panel of M. tuberculosis mutants. Two strains carrying mutations in DprE1, the decaprenylphosphoryl-β-D-ribose oxidase involved in the synthesis of mycobacterial arabinogalactan, were more susceptible to selamectin. Biochemical assays against the Mycobacterium smegmatis DprE1 protein confirmed this finding, and docking studies predicted a binding site in a loop that included Leu275. Sequence alignment revealed variants in this position among mycobacterial species, with the size and hydrophobicity of the residue correlating with their MIC values; M. smegmatis DprE1 variants carrying these point mutations validated the docking predictions. However, the correlation was not confirmed when M. smegmatis mutant strains were constructed and MIC phenotypic assays performed. Likewise, metabolic labeling of selamectin-treated M. smegmatis and M. tuberculosis cells with 14 C-labeled acetate did not reveal the expected lipid profile associated with DprE1 inhibition. Together, our results confirm the in vitro interactions of selamectin and DprE1 but suggest that selamectin could be a multi-target anti-mycobacterial compound.