AP
Ananth Pallaseni
Author with expertise in Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-associated proteins
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
11
h-index:
3
/
i10-index:
2
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Predicting base editing outcomes using position-specific sequence determinants

Ananth Pallaseni et al.Sep 16, 2021
Abstract Nucleotide-level control over DNA sequences is poised to power functional genomics studies and lead to new therapeutics. CRISPR/Cas base editors promise to achieve this ability, but the determinants of their activity remain incompletely understood. We measured base editing frequencies in two human cell lines for two cytosine and two adenine base editors at ∼14,000 target sequences. Base editing activity is sequence-biased, with largest effects from nucleotides flanking the target base, and is correlated with measures of Cas9 guide RNA efficiency. Whether a base is edited depends strongly on the combination of its position in the target and the preceding base, with a preceding thymine in both editor types leading to a wider editing window, while a preceding guanine in cytosine editors and preceding adenine in adenine editors to a narrower one. The impact of features on editing rate depends on the position, with guide RNA efficacy mainly influencing bases around the centre of the window, and sequence biases away from it. We use these observations to train a machine learning model to predict editing activity per position for both adenine and cytosine editors, with accuracy ranging from 0.49 to 0.72 between editors, and with better generalization performance across datasets than existing tools. We demonstrate the usefulness of our model by predicting the efficacy of potential disease mutation correcting guides, and find that most of them suffer from more unwanted editing than corrected outcomes. This work unravels the position-specificity of base editing biases, and provides a solution to account for them, thus allowing more efficient planning of base edits in experimental and therapeutic contexts.
1
Citation1
0
Save
1

The interplay of DNA repair context with target sequence predictably biasses Cas9-generated mutations

Ananth Pallaseni et al.Jun 28, 2023
The genome engineering capability of the CRISPR/Cas system depends on the DNA repair machinery to generate the final outcome. Several genes can have an impact on mutations created, but their exact function and contribution to the result of the repair are not completely characterised. This lack of knowledge has limited the ability to comprehend and regulate the editing outcomes. Here, we measure how the absence of 21 repair genes changes the mutation outcomes of Cas9-generated cuts at 2,812 synthetic target sequences in mouse embryonic stem cells. Absence of key non-homologous end joining genes Lig4, Xrcc4, and Xlf abolished small insertions and deletions, while disabling key microhomology-mediated repair genes Nbn and Polq reduced frequency of longer deletions. Complex alleles of combined insertion and deletions were preferentially generated in the absence of Xrcc6. We further discover finer structure in the outcome frequency changes for single nucleotide insertions and deletions between large microhomologies that are differentially modulated by the knockouts. We use the knowledge of the reproducible variation across repair milieus to build predictive models of Cas9 editing results that outperform the current standards. This work improves our understanding of DNA repair gene function, and provides avenues for more precise modulation of CRISPR/Cas9-generated mutations.