MB
Melinda Beccari
Author with expertise in Regulation of RNA Processing and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(67% Open Access)
Cited by:
724
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Premature polyadenylation-mediated loss of stathmin-2 is a hallmark of TDP-43-dependent neurodegeneration

Ze’ev Melamed et al.Jan 8, 2019
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with loss of nuclear transactive response DNA-binding protein 43 (TDP-43). Here we identify that TDP-43 regulates expression of the neuronal growth-associated factor stathmin-2. Lowered TDP-43 levels, which reduce its binding to sites within the first intron of stathmin-2 pre-messenger RNA, uncover a cryptic polyadenylation site whose utilization produces a truncated, non-functional mRNA. Reduced stathmin-2 expression is found in neurons trans-differentiated from patient fibroblasts expressing an ALS-causing TDP-43 mutation, in motor cortex and spinal motor neurons from patients with sporadic ALS and familial ALS with GGGGCC repeat expansion in the C9orf72 gene, and in induced pluripotent stem cell (iPSC)-derived motor neurons depleted of TDP-43. Remarkably, while reduction in TDP-43 is shown to inhibit axonal regeneration of iPSC-derived motor neurons, rescue of stathmin-2 expression restores axonal regenerative capacity. Thus, premature polyadenylation-mediated reduction in stathmin-2 is a hallmark of ALS–FTD that functionally links reduced nuclear TDP-43 function to enhanced neuronal vulnerability. The mRNA encoding stathmin-2, a protein implicated in axonal growth, is shown to be widely suppressed by premature polyadenylation in both sporadic and C9orf72 ALS through a mechanism directly dependent on loss of nuclear TDP-43 in motor neurons.
0
Citation429
0
Save
76

A reference induced pluripotent stem cell line for large-scale collaborative studies

Caroline Pantazis et al.Dec 17, 2021
Abstract Human induced pluripotent stem cell (iPSC) lines are a powerful tool for studying development and disease, but the considerable phenotypic variation between lines makes it challenging to replicate key findings and integrate data across research groups. To address this issue, we sub-cloned candidate iPSC lines and deeply characterised their genetic properties using whole genome sequencing, their genomic stability upon CRISPR/Cas9-based gene editing, and their phenotypic properties including differentiation to commonly-used cell types. These studies identified KOLF2.1J as an all-around well-performing iPSC line. We then shared KOLF2.1J with groups around the world who tested its performance in head-to-head comparisons with their own preferred iPSC lines across a diverse range of differentiation protocols and functional assays. On the strength of these findings, we have made KOLF2.1J and hundreds of its gene-edited derivative clones readily accessible to promote the standardization required for large-scale collaborative science in the stem cell field. Summary The authors of this collaborative study deeply characterized human induced pluripotent stem cell (iPSC) lines to rationally select a clonally-derived cell line that performs well across multiple modalities. KOLF2.1J was identified as a candidate reference cell line based on single-cell analysis of its gene expression in the pluripotent state, whole genome sequencing, genomic stability after highly efficient CRISPR-mediated gene editing, integrity of the p53 pathway, and the efficiency with which it differentiated into multiple target cell populations. Since it is deeply characterized and can be readily acquired, KOLF2.1J is an attractive reference cell line for groups working with iPSCs. Graphical abstract
76
Citation9
0
Save
2

Stathmin-2 loss leads to neurofilament-dependent axonal collapse driving motor and sensory denervation

Jone López‐Erauskin et al.Dec 12, 2022
Abstract The human mRNA most affected by TDP-43 loss-of-function is transcribed from the STMN2 gene and encodes stathmin-2 (also known as SCG10), whose loss is a neurodegenerative disease hallmark. Here using multiple in vivo approaches, including transient antisense oligonucleotide (ASO)-mediated suppression, chronic shRNA-mediated depletion in aging mice, and germline deletion, we establish stathmin-2 to be essential for acquisition and maintenance of neurofilament-dependent structuring of axoplasm critical for maintaining diameter and conduction velocity of large-myelinated axons. Sustained stathmin-2 loss from an otherwise mature adult nervous system is demonstrated over a time course of eight months to initiate and drive motor neuron disease that includes 1) shrinkage in inter-neurofilament spacing that is required to produce a three-dimensional space filling array that defines axonal caliber, 2) collapse of mature axonal caliber with tearing of outer myelin layers, 3) reduced conduction velocity, 4) progressive motor and sensory deficits (including reduction of the pain transducing neuropeptide CGRP), and 5) muscle denervation. Demonstration that chronic stathmin-2 reduction is itself sufficient to trigger motor neuron disease reinforces restoration of stathmin-2 as an attractive therapeutic approach for TDP-43-dependent neurodegeneration, including the fatal adult motor neuron disease ALS.
2
Citation2
0
Save