RD
Ravi Duggirala
Author with expertise in Diffusion Magnetic Resonance Imaging
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1,474
h-index:
40
/
i10-index:
76
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Identification of common variants associated with human hippocampal and intracranial volumes

Jason Stein et al.Apr 15, 2012
+98
A
M
J
Paul Thompson and colleagues report a genome-wide association study for hippocampal, intracranial and total brain volume. They identify a locus at 12q24 associated with hippocampal volume and a locus at 12q14 associated with intracranial volume. Identifying genetic variants influencing human brain structures may reveal new biological mechanisms underlying cognition and neuropsychiatric illness. The volume of the hippocampus is a biomarker of incipient Alzheimer's disease1,2 and is reduced in schizophrenia3, major depression4 and mesial temporal lobe epilepsy5. Whereas many brain imaging phenotypes are highly heritable6,7, identifying and replicating genetic influences has been difficult, as small effects and the high costs of magnetic resonance imaging (MRI) have led to underpowered studies. Here we report genome-wide association meta-analyses and replication for mean bilateral hippocampal, total brain and intracranial volumes from a large multinational consortium. The intergenic variant rs7294919 was associated with hippocampal volume (12q24.22; N = 21,151; P = 6.70 × 10−16) and the expression levels of the positional candidate gene TESC in brain tissue. Additionally, rs10784502, located within HMGA2, was associated with intracranial volume (12q14.3; N = 15,782; P = 1.12 × 10−12). We also identified a suggestive association with total brain volume at rs10494373 within DDR2 (1q23.3; N = 6,500; P = 5.81 × 10−7).
0
Citation625
0
Save
0

Genetic control over the resting brain

David Glahn et al.Jan 19, 2010
+10
P
A
D
The default-mode network, a coherent resting-state brain network, is thought to characterize basal neural activity. Aberrant default-mode connectivity has been reported in a host of neurological and psychiatric illnesses and in persons at genetic risk for such illnesses. Whereas the neurophysiologic mechanisms that regulate default-mode connectivity are unclear, there is growing evidence that genetic factors play a role. In this report, we estimate the importance of genetic effects on the default-mode network by examining covariation patterns in functional connectivity among 333 individuals from 29 randomly selected extended pedigrees. Heritability for default-mode functional connectivity was 0.424 ± 0.17 ( P = 0.0046). Although neuroanatomic variation in this network was also heritable, the genetic factors that influence default-mode functional connectivity and gray-matter density seem to be distinct, suggesting that unique genes influence the structure and function of the network. In contrast, significant genetic correlations between regions within the network provide evidence that the same genetic factors contribute to variation in functional connectivity throughout the default mode. Specifically, the left parahippocampal region was genetically correlated with all other network regions. In addition, the posterior cingulate/precuneus region, medial prefrontal cortex, and right cerebellum seem to form a subnetwork. Default-mode functional connectivity is influenced by genetic factors that cannot be attributed to anatomic variation or a single region within the network. By establishing the heritability of default-mode functional connectivity, this experiment provides the obligatory evidence required before these measures can be considered as endophenotypes for psychiatric or neurological illnesses or to identify genes influencing intrinsic brain function.
0
Citation466
0
Save
0

Multi-site genetic analysis of diffusion images and voxelwise heritability analysis: A pilot project of the ENIGMA–DTI working group

Neda Jahanshad et al.Apr 27, 2013
+28
E
P
N
The ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) Consortium was set up to analyze brain measures and genotypes from multiple sites across the world to improve the power to detect genetic variants that influence the brain. Diffusion tensor imaging (DTI) yields quantitative measures sensitive to brain development and degeneration, and some common genetic variants may be associated with white matter integrity or connectivity. DTI measures, such as the fractional anisotropy (FA) of water diffusion, may be useful for identifying genetic variants that influence brain microstructure. However, genome-wide association studies (GWAS) require large populations to obtain sufficient power to detect and replicate significant effects, motivating a multi-site consortium effort. As part of an ENIGMA–DTI working group, we analyzed high-resolution FA images from multiple imaging sites across North America, Australia, and Europe, to address the challenge of harmonizing imaging data collected at multiple sites. Four hundred images of healthy adults aged 18–85 from four sites were used to create a template and corresponding skeletonized FA image as a common reference space. Using twin and pedigree samples of different ethnicities, we used our common template to evaluate the heritability of tract-derived FA measures. We show that our template is reliable for integrating multiple datasets by combining results through meta-analysis and unifying the data through exploratory mega-analyses. Our results may help prioritize regions of the FA map that are consistently influenced by additive genetic factors for future genetic discovery studies. Protocols and templates are publicly available at (http://enigma.loni.ucla.edu/ongoing/dti-working-group/).
0
Citation383
0
Save
0

Do Candidate Genes Affect the Brain's White Matter Microstructure? Large-Scale Evaluation of 6,165 Diffusion MRI Scans

Neda Jahanshad et al.Feb 20, 2017
+61
J
H
N
Susceptibility genes for psychiatric and neurological disorders - including APOE, BDNF, CLU, CNTNAP2, COMT, DISC1, DTNBP1, ErbB4, HFE, NRG1, NTKR3, and ZNF804A - have been reported to affect white matter (WM) microstructure in the healthy human brain, as assessed through diffusion tensor imaging (DTI). However, effects of single nucleotide polymorphisms (SNPs) in these genes explain only a small fraction of the overall variance and are challenging to detect reliably in single cohort studies. To date, few studies have evaluated the reproducibility of these results. As part of the ENIGMA-DTI consortium, we pooled regional fractional anisotropy (FA) measures for 6,165 subjects (CEU ancestry N=4,458) from 11 cohorts worldwide to evaluate effects of 15 candidate SNPs by examining their associations with WM microstructure. Additive association tests were conducted for each SNP. We used several meta-analytic and mega-analytic designs, and we evaluated regions of interest at multiple granularity levels. The ENIGMA-DTI protocol was able to detect single-cohort findings as originally reported. Even so, in this very large sample, no significant associations remained after multiple-testing correction for the 15 SNPs investigated. Suggestive associations (1.3x10-4 < p < 0.05, uncorrected) were found for BDNF, COMT, and ZNF804A in specific tracts. Meta- and mega-analyses revealed similar findings. Regardless of the approach, the previously reported candidate SNPs did not show significant associations with WM microstructure in this largest genetic study of DTI to date; the negative findings are likely not due to insufficient power. Genome-wide studies, involving large-scale meta-analyses, may help to discover SNPs robustly influencing WM microstructure.
0

Non-crossover gene conversions show strong GC bias and unexpected clustering in humans

Amy Williams et al.Sep 16, 2014
+10
T
G
A
Although the past decade has seen tremendous progress in our understanding of fine-scale recombination, little is known about non-crossover (NCO) gene conversion. We report the first genome-wide study of NCO events in humans. Using SNP array data from 98 meioses, we identified 103 sites affected by NCO, of which 50/52 were confirmed in sequence data. Overlap with double strand break (DSB) hotspots indicates that the events are likely of meiotic origin. We estimate that a site is involved in a NCO at a rate of 5.7×10-6/bp/generation, consistent with sperm-typing studies, and infer that tract lengths span at least an order of magnitude. Observed NCO events show strong allelic bias at heterozygous AT/GC SNPs, with 68% (58?78%) transmitting GC alleles (P=5×10-4). Strikingly, in 4 of 15 regions for which there are also resequencing data, multiple disjoint NCO tracts cluster in close proximity (~20?30 kb), a phenomenon not previously seen in mammals.