A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
DS
Dorota Sendorek
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
6
(17% Open Access)
Cited by:
530
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Tumour genomic and microenvironmental heterogeneity for integrated prediction of 5-year biochemical recurrence of prostate cancer: a retrospective cohort study

Emilie Lalonde et al.Nov 16, 2014
BackgroundClinical prognostic groupings for localised prostate cancers are imprecise, with 30–50% of patients recurring after image-guided radiotherapy or radical prostatectomy. We aimed to test combined genomic and microenvironmental indices in prostate cancer to improve risk stratification and complement clinical prognostic factors.MethodsWe used DNA-based indices alone or in combination with intra-prostatic hypoxia measurements to develop four prognostic indices in 126 low-risk to intermediate-risk patients (Toronto cohort) who will receive image-guided radiotherapy. We validated these indices in two independent cohorts of 154 (Memorial Sloan Kettering Cancer Center cohort [MSKCC] cohort) and 117 (Cambridge cohort) radical prostatectomy specimens from low-risk to high-risk patients. We applied unsupervised and supervised machine learning techniques to the copy-number profiles of 126 pre-image-guided radiotherapy diagnostic biopsies to develop prognostic signatures. Our primary endpoint was the development of a set of prognostic measures capable of stratifying patients for risk of biochemical relapse 5 years after primary treatment.FindingsBiochemical relapse was associated with indices of tumour hypoxia, genomic instability, and genomic subtypes based on multivariate analyses. We identified four genomic subtypes for prostate cancer, which had different 5-year biochemical relapse-free survival. Genomic instability is prognostic for relapse in both image-guided radiotherapy (multivariate analysis hazard ratio [HR] 4·5 [95% CI 2·1–9·8]; p=0·00013; area under the receiver operator curve [AUC] 0·70 [95% CI 0·65–0·76]) and radical prostatectomy (4·0 [1·6–9·7]; p=0·0024; AUC 0·57 [0·52–0·61]) patients with prostate cancer, and its effect is magnified by intratumoral hypoxia (3·8 [1·2–12]; p=0·019; AUC 0·67 [0·61–0·73]). A novel 100-loci DNA signature accurately classified treatment outcome in the MSKCC low-risk to intermediate-risk cohort (multivariate analysis HR 6·1 [95% CI 2·0–19]; p=0·0015; AUC 0·74 [95% CI 0·65–0·83]). In the independent MSKCC and Cambridge cohorts, this signature identified low-risk to high-risk patients who were most likely to fail treatment within 18 months (combined cohorts multivariate analysis HR 2·9 [95% CI 1·4–6·0]; p=0·0039; AUC 0·68 [95% CI 0·63–0·73]), and was better at predicting biochemical relapse than 23 previously published RNA signatures.InterpretationThis is the first study of cancer outcome to integrate DNA-based and microenvironment-based failure indices to predict patient outcome. Patients exhibiting these aggressive features after biopsy should be entered into treatment intensification trials.FundingMovember Foundation, Prostate Cancer Canada, Ontario Institute for Cancer Research, Canadian Institute for Health Research, NIHR Cambridge Biomedical Research Centre, The University of Cambridge, Cancer Research UK, Cambridge Cancer Charity, Prostate Cancer UK, Hutchison Whampoa Limited, Terry Fox Research Institute, Princess Margaret Cancer Centre Foundation, PMH-Radiation Medicine Program Academic Enrichment Fund, Motorcycle Ride for Dad (Durham), Canadian Cancer Society.
0
Citation316
0
Save
0

Valection: Design Optimization for Validation and Verification Studies

Christopher Cooper et al.Jan 28, 2018
Background: Platform-specific error profiles necessitate confirmatory studies where predictions made on data generated using one technology are additionally verified by processing the same samples on an orthogonal technology. In disciplines that rely heavily on high-throughput data generation, such as genomics, reducing the impact of false positive and false negative rates in results is a top priority. However, verifying all predictions can be costly and redundant, and testing a subset of findings is often used to estimate the true error profile. To determine how to create subsets of predictions for validation that maximize inference of global error profiles, we developed Valection, a software program that implements multiple strategies for the selection of verification candidates. Results: To evaluate these selection strategies, we obtained 261 sets of somatic mutation calls from a single-nucleotide variant caller benchmarking challenge where 21 teams competed on whole-genome sequencing datasets of three computationally-simulated tumours. By using synthetic data, we had complete ground truth of the tumours' mutations and, therefore, we were able to accurately determine how estimates from the selected subset of verification candidates compared to the complete prediction set. We found that selection strategy performance depends on several verification study characteristics. In particular the verification budget of the experiment (i.e. how many candidates can be selected) is shown to influence estimates. Conclusions: The Valection framework is flexible, allowing for the implementation of additional selection algorithms in the future. Its applicability extends to any discipline that relies on experimental verification and will benefit from the optimization of verification candidate selection.
0

Germline Contamination and Leakage in Whole Genome Somatic Single Nucleotide Variant Detection

Dorota Sendorek et al.Oct 17, 2017
Background: The clinical sequencing of cancer genomes to personalize therapy is becoming routine across the world. However, concerns over patient re-identification from these data lead to questions about how tightly access should be controlled. It is not thought to be possible to re-identify patients from somatic variant data. However, somatic variant detection pipelines can mistakenly identify germline variants as somatic ones, a process called "germline leakage". The rate of germline leakage across different somatic variant detection pipelines is not well-understood, and it is uncertain whether or not somatic variant calls should be considered re-identifiable. To fill this gap, we quantified germline leakage across 259 sets of whole-genome somatic single nucleotide variant (SNVs) predictions made by 21 teams as part of the ICGC-TCGA DREAM Somatic Mutation Calling Challenge. Results: The median somatic SNV prediction set contained 4,325 somatic SNVs and leaked one germline polymorphism. The level of germline leakage was inversely correlated with somatic SNV prediction accuracy and positively correlated with the amount of infiltrating normal cells. The specific germline variants leaked differed by tumour and algorithm. To aid in quantitation and correction of leakage, we created a tool, called GermlineFilter, for use in public-facing somatic SNV databases. Conclusions: The potential for patient re-identification from leaked germline variants in somatic SNV predictions has led to divergent open data access policies, based on different assessments of the risks. Indeed, a single, well-publicized re-identification event could reshape public perceptions of the values of genomic data sharing. We find that modern somatic SNV prediction pipelines have low germline-leakage rates, which can be further reduced, especially for cloud-sharing, using pre-filtering software.
0

Subnetwork-based prognostic biomarkers exhibit performance and robustness superior to gene-based biomarkers in breast cancer

Michal Grzadkowski et al.Mar 28, 2018
Background: Effective classification of cancer patients into groups with differential survival remains an important and unsolved challenge. Biomarkers have been developed based on mRNA abundance data, but their replicability and clinical utility is modest. Integrating functional information, such as pathway data, has been suggested to improve biomarker performance. To date, however, the advantages of subnetwork-based biomarkers have not been quantified. Results: We deeply sampled the population of prognostic gene-based and subnetwork-based biomarkers in a breast cancer meta-dataset of 4,960 patients. Analysing the performance and robustness of 22,000,000 gene biomarkers and 6,250,000 subnetwork biomarkers across twenty different training:testing cohort partitions of the meta-dataset revealed that subnetwork biomarkers exhibit superior overall performance and higher concordance across partitions. We find evidence of an upper bound for optimal biomarker size of ~200 genes or ~100 subnetworks. Additionally, with both biomarker feature types, larger biomarkers tend to show less consistency in performance across partitions, suggestive of over-fitting. Finally, an evaluation of varying training cohort sizes quantifies the effects of training cohort size. Conclusions: Many groups are developing techniques for exploiting network-based representations of biological pathways to characterize cancer and other diseases. By considering the distribution of gene- and subnetwork-based biomarkers, we show that pathway data improves performance and replicability, and that smaller biomarkers are more robust across patient cohorts. These insights may facilitate development of clinically useful biomarkers.