RG
Robert Gillies
Author with expertise in Metabolic Reprogramming in Cancer Biology
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
31
(58% Open Access)
Cited by:
19,088
h-index:
119
/
i10-index:
437
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Radiomics: Images Are More than Pictures, They Are Data

Robert Gillies et al.Nov 18, 2015
H
P
R
In the past decade, the field of medical image analysis has grown exponentially, with an increased number of pattern recognition tools and an increase in data set sizes. These advances have facilitated the development of processes for high-throughput extraction of quantitative features that result in the conversion of images into mineable data and the subsequent analysis of these data for decision support; this practice is termed radiomics. This is in contrast to the traditional practice of treating medical images as pictures intended solely for visual interpretation. Radiomic data contain first-, second-, and higher-order statistics. These data are combined with other patient data and are mined with sophisticated bioinformatics tools to develop models that may potentially improve diagnostic, prognostic, and predictive accuracy. Because radiomics analyses are intended to be conducted with standard of care images, it is conceivable that conversion of digital images to mineable data will eventually become routine practice. This report describes the process of radiomics, its challenges, and its potential power to facilitate better clinical decision making, particularly in the care of patients with cancer.
0

Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach

Hugo Aerts et al.Jun 3, 2014
+14
R
E
H
Human cancers exhibit strong phenotypic differences that can be visualized noninvasively by medical imaging. Radiomics refers to the comprehensive quantification of tumour phenotypes by applying a large number of quantitative image features. Here we present a radiomic analysis of 440 features quantifying tumour image intensity, shape and texture, which are extracted from computed tomography data of 1,019 patients with lung or head-and-neck cancer. We find that a large number of radiomic features have prognostic power in independent data sets of lung and head-and-neck cancer patients, many of which were not identified as significant before. Radiogenomics analysis reveals that a prognostic radiomic signature, capturing intratumour heterogeneity, is associated with underlying gene-expression patterns. These data suggest that radiomics identifies a general prognostic phenotype existing in both lung and head-and-neck cancer. This may have a clinical impact as imaging is routinely used in clinical practice, providing an unprecedented opportunity to improve decision-support in cancer treatment at low cost. An individual tumour is often heterogeneous and its various features can be visualised noninvasively using medical imaging. Here, the authors analyse large computed tomography data sets using radiomic algorithms to identify heterogeneity, and find that some of these tumour features have prognostic value across cancer types.
1

The Image Biomarker Standardization Initiative: Standardized Quantitative Radiomics for High-Throughput Image-based Phenotyping

Alex Zwanenburg et al.Mar 10, 2020
+60
M
M
A
The image biomarker standardisation initiative (IBSI) is an independent international collaboration which works towards standardising the extraction of image biomarkers from acquired imaging for the purpose of high-throughput quantitative image analysis (radiomics). Lack of reproducibility and validation of high-throughput quantitative image analysis studies is considered to be a major challenge for the field. Part of this challenge lies in the scantiness of consensus-based guidelines and definitions for the process of translating acquired imaging into high-throughput image biomarkers. The IBSI therefore seeks to provide image biomarker nomenclature and definitions, benchmark data sets, and benchmark values to verify image processing and image biomarker calculations, as well as reporting guidelines, for high-throughput image analysis.
0

Acidity Generated by the Tumor Microenvironment Drives Local Invasion

Verónica Estrella et al.Jan 3, 2013
+10
R
J
V
Abstract The pH of solid tumors is acidic due to increased fermentative metabolism and poor perfusion. It has been hypothesized that acid pH promotes local invasive growth and metastasis. The hypothesis that acid mediates invasion proposes that H+ diffuses from the proximal tumor microenvironment into adjacent normal tissues where it causes tissue remodeling that permits local invasion. In the current work, tumor invasion and peritumoral pH were monitored over time using intravital microscopy. In every case, the peritumoral pH was acidic and heterogeneous and the regions of highest tumor invasion corresponded to areas of lowest pH. Tumor invasion did not occur into regions with normal or near-normal extracellular pH. Immunohistochemical analyses revealed that cells in the invasive edges expressed the glucose transporter-1 and the sodium–hydrogen exchanger-1, both of which were associated with peritumoral acidosis. In support of the functional importance of our findings, oral administration of sodium bicarbonate was sufficient to increase peritumoral pH and inhibit tumor growth and local invasion in a preclinical model, supporting the acid-mediated invasion hypothesis. Cancer Res; 73(5); 1524–35. ©2012 AACR.
0

Acid-Mediated Tumor Invasion: a Multidisciplinary Study

Robert Gatenby et al.May 15, 2006
+2
A
E
R
Abstract The acid-mediated tumor invasion hypothesis proposes altered glucose metabolism and increased glucose uptake, observed in the vast majority of clinical cancers by fluorodeoxyglucose-positron emission tomography, are critical for development of the invasive phenotype. In this model, increased acid production due to altered glucose metabolism serves as a key intermediate by producing H+ flow along concentration gradients into adjacent normal tissue. This chronic exposure of peritumoral normal tissue to an acidic microenvironment produces toxicity by: (a) normal cell death caused by the collapse of the transmembrane H+ gradient inducing necrosis or apoptosis and (b) extracellular matrix degradation through the release of cathepsin B and other proteolytic enzymes. Tumor cells evolve resistance to acid-induced toxicity during carcinogenesis, allowing them to survive and proliferate in low pH microenvironments. This permits them to invade the damaged adjacent normal tissue despite the acid gradients. Here, we describe theoretical and empirical evidence for acid-mediated invasion. In silico simulations using mathematical models provide testable predictions concerning the morphology and cellular and extracellular dynamics at the tumor-host interface. In vivo experiments confirm the presence of peritumoral acid gradients as well as cellular toxicity and extracellular matrix degradation in the normal tissue exposed to the acidic microenvironment. The acid-mediated tumor invasion model provides a simple mechanism linking altered glucose metabolism with the ability of tumor cells to form invasive cancers. (Cancer Res 2006; 66(10): 5216-23)
0
Citation738
0
Save
0

Adaptive Therapy

Robert Gatenby et al.Jun 1, 2009
B
R
A
R
Abstract A number of successful systemic therapies are available for treatment of disseminated cancers. However, tumor response is often transient, and therapy frequently fails due to emergence of resistant populations. The latter reflects the temporal and spatial heterogeneity of the tumor microenvironment as well as the evolutionary capacity of cancer phenotypes to adapt to therapeutic perturbations. Although cancers are highly dynamic systems, cancer therapy is typically administered according to a fixed, linear protocol. Here we examine an adaptive therapeutic approach that evolves in response to the temporal and spatial variability of tumor microenvironment and cellular phenotype as well as therapy-induced perturbations. Initial mathematical models find that when resistant phenotypes arise in the untreated tumor, they are typically present in small numbers because they are less fit than the sensitive population. This reflects the “cost” of phenotypic resistance such as additional substrate and energy used to up-regulate xenobiotic metabolism, and therefore not available for proliferation, or the growth inhibitory nature of environments (i.e., ischemia or hypoxia) that confer resistance on phenotypically sensitive cells. Thus, in the Darwinian environment of a cancer, the fitter chemosensitive cells will ordinarily proliferate at the expense of the less fit chemoresistant cells. The models show that, if resistant populations are present before administration of therapy, treatments designed to kill maximum numbers of cancer cells remove this inhibitory effect and actually promote more rapid growth of the resistant populations. We present an alternative approach in which treatment is continuously modulated to achieve a fixed tumor population. The goal of adaptive therapy is to enforce a stable tumor burden by permitting a significant population of chemosensitive cells to survive so that they, in turn, suppress proliferation of the less fit but chemoresistant subpopulations. Computer simulations show that this strategy can result in prolonged survival that is substantially greater than that of high dose density or metronomic therapies. The feasibility of adaptive therapy is supported by in vivo experiments. [Cancer Res 2009;69(11):4894–903] Major Findings We present mathematical analysis of the evolutionary dynamics of tumor populations with and without therapy. Analytic solutions and numerical simulations show that, with pretreatment, therapy-resistant cancer subpopulations are present due to phenotypic or microenvironmental factors; maximum dose density chemotherapy hastens rapid expansion of resistant populations. The models predict that host survival can be maximized if “treatment-for-cure strategy” is replaced by “treatment-for-stability.” Specifically, the models predict that an optimal treatment strategy will modulate therapy to maintain a stable population of chemosensitive cells that can, in turn, suppress the growth of resistant populations under normal tumor conditions (i.e., when therapy-induced toxicity is absent). In vivo experiments using OVCAR xenografts treated with carboplatin show that adaptive therapy is feasible and, in this system, can produce long-term survival.
0
Citation715
0
Save
0

Determination of cell number in monolayer cultures

Robert Gillies et al.Nov 1, 1986
M
N
R
Determining the cytostatic or cytotoxic effects of various conditions on monolayer cells requires techniques that are rapid, reproducible, and able to monitor these effects as a function of time. Methods currently used to monitor cytostasis or cytotoxicity are either static or indirect; that is, they are designed to test effects of various treatments either at single time points or on associated cellular processes, such as membrane integrity. Because of these limitations in extant techniques, we undertook this study to improve methods for the rapid determination of cell number in monolayer cultures. We have arrived at conditions of staining cell nuclei with crystal violet under fixed regimens which allow rapid and reproducible quantification of cell number in cultures grown in 24-well miniwells. Quantification is possible by solubilizing the adsorbed dye into a solution of Triton X-100 and determining optical density (O.D.) using spectrophotometry. The present communication documents that O.D. is linearly related to cell number with a sensitivity of ca. 500 cells and that the technique is applicable to study agents which affect cell proliferation.
0
Citation641
0
Save
0

Bicarbonate Increases Tumor pH and Inhibits Spontaneous Metastases

Ian Robey et al.Mar 11, 2009
+8
N
B
I
Abstract The external pH of solid tumors is acidic as a consequence of increased metabolism of glucose and poor perfusion. Acid pH has been shown to stimulate tumor cell invasion and metastasis in vitro and in cells before tail vein injection in vivo. The present study investigates whether inhibition of this tumor acidity will reduce the incidence of in vivo metastases. Here, we show that oral NaHCO3 selectively increased the pH of tumors and reduced the formation of spontaneous metastases in mouse models of metastatic breast cancer. This treatment regimen was shown to significantly increase the extracellular pH, but not the intracellular pH, of tumors by 31P magnetic resonance spectroscopy and the export of acid from growing tumors by fluorescence microscopy of tumors grown in window chambers. NaHCO3 therapy also reduced the rate of lymph node involvement, yet did not affect the levels of circulating tumor cells, suggesting that reduced organ metastases were not due to increased intravasation. In contrast, NaHCO3 therapy significantly reduced the formation of hepatic metastases following intrasplenic injection, suggesting that it did inhibit extravasation and colonization. In tail vein injections of alternative cancer models, bicarbonate had mixed results, inhibiting the formation of metastases from PC3M prostate cancer cells, but not those of B16 melanoma. Although the mechanism of this therapy is not known with certainty, low pH was shown to increase the release of active cathepsin B, an important matrix remodeling protease. [Cancer Res 2009;69(6):2260–8]
0

Neutralization of Tumor Acidity Improves Antitumor Responses to Immunotherapy

Shari Pilon‐Thomas et al.Jan 12, 2016
+8
A
K
S
Abstract Cancer immunotherapies, such as immune checkpoint blockade or adoptive T-cell transfer, can lead to durable responses in the clinic, but response rates remain low due to undefined suppression mechanisms. Solid tumors are characterized by a highly acidic microenvironment that might blunt the effectiveness of antitumor immunity. In this study, we directly investigated the effects of tumor acidity on the efficacy of immunotherapy. An acidic pH environment blocked T-cell activation and limited glycolysis in vitro. IFNγ release blocked by acidic pH did not occur at the level of steady-state mRNA, implying that the effect of acidity was posttranslational. Acidification did not affect cytoplasmic pH, suggesting that signals transduced by external acidity were likely mediated by specific acid-sensing receptors, four of which are expressed by T cells. Notably, neutralizing tumor acidity with bicarbonate monotherapy impaired the growth of some cancer types in mice where it was associated with increased T-cell infiltration. Furthermore, combining bicarbonate therapy with anti-CTLA-4, anti-PD1, or adoptive T-cell transfer improved antitumor responses in multiple models, including cures in some subjects. Overall, our findings show how raising intratumoral pH through oral buffers therapy can improve responses to immunotherapy, with the potential for immediate clinical translation. Cancer Res; 76(6); 1381–90. ©2015 AACR.
0

Acidic pH enhances the invasive behavior of human melanoma cells

Raul Mart�nez-Zaguil�n et al.Mar 1, 1996
+3
R
E
R
0
Citation478
0
Save
Load More