Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
TA
Teresa Algara
Author with expertise in Genomic Landscape of Cancer and Mutational Signatures
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
8
(75% Open Access)
Cited by:
1,248
h-index:
13
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution

Peter Eirew et al.Nov 25, 2014
Deep-genome and single-cell sequencing analyses of patient-derived breast cancer xenografts reveal extensive, dynamic and reproducible changes in intra-tumoral mutational clonal composition on engraftment and serial propagation. Xenograft transplantation of primary human cancer cells into mice provides valuable models in which to study mechanisms underlying tumorigenesis, drug response and resistance. This study demonstrates that clonal evolution resembling that seen in human tumours also occurs on engraftment and during subsequent passaging of breast tumours in immunodeficient mice. In addition, similar clonal expansion patterns emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. These findings suggest that patient-derived xenografts may be useful for studying patient-specific tumour characteristics such as the response to drugs tailored to specific genomic alterations. Human cancers, including breast cancers, comprise clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution1,2, underpinning important emergent features such as drug resistance and metastasis3,4,5,6,7. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours8,9,10. However, the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours have not been systematically examined at single-cell resolution. Here we show, using deep-genome and single-cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single-cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies using patient-derived breast cancer xenoengraftment.
0
Citation577
0
Save
1

Single cell fitness landscapes induced by genetic and pharmacologic perturbations in cancer

Sohrab Salehi et al.May 9, 2020
Tumour fitness landscapes underpin selection in cancer, impacting etiology, evolution and response to treatment. Progress in defining fitness landscapes has been impeded by a lack of timeseries perturbation experiments over realistic intervals at single cell resolution. We studied the nature of clonal dynamics induced by genetic and pharmacologic perturbation with a quantitative fitness model developed to ascribe quantitative selective coefficients to individual cancer clones, enable prediction of clone-specific growth potential, and forecast competitive clonal dynamics over time. We applied the model to serial single cell genome ( > 60,000 cells) and transcriptome ( > 58,000 cells) experiments ranging from 10 months to 2.5 years in duration. We found that genetic perturbation of TP53 in epithelial cell lines induces multiple forms of copy number alteration that confer increased fitness to clonal populations with measurable consequences on gene expression. In patient derived xenografts, predicted selective coefficients accurately forecasted clonal competition dynamics, that were validated with timeseries sampling of experimentally engineered mixtures of low and high fitness clones. In cisplatin-treated patient derived xenografts, the fitness landscape was inverted in a time-dependent manner, whereby a drug resistant clone emerged from a phylogenetic lineage of low fitness clones, and high fitness clones were eradicated. Moreover, clonal selection mediated reversible drug response early in the selection process, whereas late dynamics in genomically fixed clones were associated with transcriptional plasticity on a fixed clonal genotype. Together, our findings outline causal mechanisms with implication for interpreting how mutations and multi-faceted drug resistance mechanisms shape the etiology and cellular fitness of human cancers.
1
Citation6
0
Save
17

The impact of mutational processes on structural genomic plasticity in cancer cells

Tyler Funnell et al.Jun 4, 2021
ABSTRACT Structural genome alterations are determinants of cancer ontogeny and therapeutic response. While bulk genome sequencing has enabled delineation of structural variation (SV) mutational processes which generate patterns of DNA damage, we have little understanding of how these processes lead to cell-to-cell variations which underlie selection and rates of accrual of different genomic lesions. We analysed 309 high grade serous ovarian and triple negative breast cancer genomes to determine their mutational processes, selecting 22 from which we sequenced >22,000 single cell whole genomes across a spectrum of mutational processes. We show that distinct patterns of cell-to-cell variation in aneuploidy, copy number alteration (CNA) and segment length occur in homologous recombination deficiency (HRD) and fold-back inversion (FBI) phenotypes. Widespread aneuploidy through induction of HRD through BRCA1 and BRCA2 inactivation was mirrored by continuous whole genome duplication in HRD tumours, contrasted with early ploidy fixation in FBI. FBI tumours exhibited copy number distributions skewed towards gains, widespread clone-specific variation in amplitude of high-level amplifications, often impacting oncogenes, and break-point variability consistent with progressive genomic diversification, which we termed serriform structural variation (SSV). SSVs were consistent with a CNA-based molecular clock reflecting a continual and distributed process across clones within tumours. These observations reveal previously obscured genome plasticity and evolutionary properties with implications for cancer evolution, therapeutic targeting and response.
17
Citation5
0
Save
0

Resource: Scalable whole genome sequencing of 40,000 single cells identifies stochastic aneuploidies, genome replication states and clonal repertoires

Emma Laks et al.Sep 7, 2018
Essential features of cancer tissue cellular heterogeneity such as negatively selected genome topologies, sub-clonal mutation patterns and genome replication states can only effectively be studied by sequencing single-cell genomes at scale and high fidelity. Using an amplification-free single-cell genome sequencing approach implemented on commodity hardware (DLP+) coupled with a cloud-based computational platform, we define a resource of 40,000 single-cell genomes characterized by their genome states, across a wide range of tissue types and conditions. We show that shallow sequencing across thousands of genomes permits reconstruction of clonal genomes to single nucleotide resolution through aggregation analysis of cells sharing higher order genome structure. From large-scale population analysis over thousands of cells, we identify rare cells exhibiting mitotic mis-segregation of whole chromosomes. We observe that tissue derived scWGS libraries exhibit lower rates of whole chromosome anueploidy than cell lines, and loss of p53 results in a shift in event type, but not overall prevalence in breast epithelium. Finally, we demonstrate that the replication states of genomes can be identified, allowing the number and proportion of replicating cells, as well as the chromosomal pattern of replication to be unambiguously identified in single-cell genome sequencing experiments. The combined annotated resource and approach provide a re-implementable large scale platform for studying lineages and tissue heterogeneity.
0

Single cell decoding of drug induced transcriptomic reprogramming in triple negative breast cancers

Farhia Kabeer et al.Jan 1, 2023
Background: The encoding of cell intrinsic resistance states in breast cancer reflects the contributions of genomic and non-genomic variation. However, identifying the potential contributions of each requires accurate measurement and subtraction of the contribution of clonal fitness from co-measurement of transcriptional states. Somatic genomic variation in gene dosage, copy number variation, is the dominant mutational mechanism in breast cancer contributing to transcriptional variation and has recently been shown to contribute to platinum chemotherapy resistance states. Here we deploy time series measurements of triple negative breast cancer single cell transcriptomes in conjunction with co-measured single cell copy number associated clonal fitness to identify the contributions of genomic and non-genomic mechanisms to drug associated transcription states. Results: We generated serial scRNA-seq data (126,556 cells) from triple negative breast cancer (TNBC) patient-derived xenograft (PDX) experiments over 2.5 years in duration, and matched it against genomic copy number single cell data from the same biological samples. We show that the cell memory of transcriptional states of TNBC tumors serially exposed to platinum identifies distinct clonal responses within individual tumours. Copy-number clones with high drug fitness leading to clonal sweeps exhibit less transcriptional reversion, whereas clones with weak drug fitness exhibit highly dynamic transcription on drug withdrawal. Pathway analysis shows that copy number associated and copy number independent transcripts converge on epithelial-mesenchymal transition (EMT) and cytokine signaling states associated with resistance. We show from trajectory analysis that transcriptional reversion exhibits hysteresis, indicating that new intermediate transcriptional states are generated by platinum exposure. Conclusions: We discovered that copy number clones with strong genotype associated fitness under platinum became fixed in their states, resulting in minimal transcriptional reversion on drug withdrawal. In contrast clones with weaker fitness undergo non-genomic transcriptional plasticity and these distinct responses co-exist within single tumours. Together the data suggest that copy number associated and copy number independent transcriptional states may contribute to platinum drug resistance within individual tumours. The dominance of genomic or non-genomic mechanisms within individual polyclonal tumours has implications for approaches to restoration of drug sensitivity and re-treatment strategies.
0

Single-cell decoding of drug induced transcriptomic reprogramming in triple negative breast cancers

Farhia Kabeer et al.Jul 18, 2024
Abstract Background The encoding of cell intrinsic drug resistance states in breast cancer reflects the contributions of genomic and non-genomic variations and requires accurate estimation of clonal fitness from co-measurement of transcriptomic and genomic data. Somatic copy number (CN) variation is the dominant mutational mechanism leading to transcriptional variation and notably contributes to platinum chemotherapy resistance cell states. Here, we deploy time series measurements of triple negative breast cancer (TNBC) single-cell transcriptomes, along with co-measured single-cell CN fitness, identifying genomic and transcriptomic mechanisms in drug-associated transcriptional cell states. Results We present scRNA-seq data (53,641 filtered cells) from serial passaging TNBC patient-derived xenograft (PDX) experiments spanning 2.5 years, matched with genomic single-cell CN data from the same samples. Our findings reveal distinct clonal responses within TNBC tumors exposed to platinum. Clones with high drug fitness undergo clonal sweeps and show subtle transcriptional reversion, while those with weak fitness exhibit dynamic transcription upon drug withdrawal. Pathway analysis highlights convergence on epithelial-mesenchymal transition and cytokine signaling, associated with resistance. Furthermore, pseudotime analysis demonstrates hysteresis in transcriptional reversion, indicating generation of new intermediate transcriptional states upon platinum exposure. Conclusions Within a polyclonal tumor, clones with strong genotype-associated fitness under platinum remained fixed, minimizing transcriptional reversion upon drug withdrawal. Conversely, clones with weaker fitness display non-genomic transcriptional plasticity. This suggests CN-associated and CN-independent transcriptional states could both contribute to platinum resistance. The dominance of genomic or non-genomic mechanisms within polyclonal tumors has implications for drug sensitivity, restoration, and re-treatment strategies.