YB
Yael Baran
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
11
(64% Open Access)
Cited by:
2,940
h-index:
18
/
i10-index:
21
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cell-cycle dynamics of chromosomal organization at single-cell resolution

Takashi Nagano et al.Jul 1, 2017
Chromosomes in proliferating metazoan cells undergo marked structural metamorphoses every cell cycle, alternating between highly condensed mitotic structures that facilitate chromosome segregation, and decondensed interphase structures that accommodate transcription, gene silencing and DNA replication. Here we use single-cell Hi-C (high-resolution chromosome conformation capture) analysis to study chromosome conformations in thousands of individual cells, and discover a continuum of cis-interaction profiles that finely position individual cells along the cell cycle. We show that chromosomal compartments, topological-associated domains (TADs), contact insulation and long-range loops, all defined by bulk Hi-C maps, are governed by distinct cell-cycle dynamics. In particular, DNA replication correlates with a build-up of compartments and a reduction in TAD insulation, while loops are generally stable from G1 to S and G2 phase. Whole-genome three-dimensional structural models reveal a radial architecture of chromosomal compartments with distinct epigenomic signatures. Our single-cell data therefore allow re-interpretation of chromosome conformation maps through the prism of the cell cycle. Single-cell Hi-C analysis in thousands of mouse embryonic stem cells shows that chromosomal compartments, topological-associated domains and long-range loops all have distinct cell-cycle dynamics. Eukaryotic chromosomes undergo a cycle of compaction and decondensation during the cell cycle. Here, Peter Fraser and colleagues have developed an improved single-cell Hi-C method to characterize the 3D organization of chromosomes through the cell cycle in thousands of individual mouse embryonic stem cells. They find that chromosomal compartments, topological-associated domains and loops are each governed by distinct dynamics and reveal a continuum of dynamic chromosomal structural features throughout the cell cycle. The results will be a new point of reference for interpreting chromosome conformation Hi-C maps.
0
Citation681
0
Save
0

Fast and accurate inference of local ancestry in Latino populations

Yael Baran et al.Apr 11, 2012
Abstract Motivation: It is becoming increasingly evident that the analysis of genotype data from recently admixed populations is providing important insights into medical genetics and population history. Such analyses have been used to identify novel disease loci, to understand recombination rate variation and to detect recent selection events. The utility of such studies crucially depends on accurate and unbiased estimation of the ancestry at every genomic locus in recently admixed populations. Although various methods have been proposed and shown to be extremely accurate in two-way admixtures (e.g. African Americans), only a few approaches have been proposed and thoroughly benchmarked on multi-way admixtures (e.g. Latino populations of the Americas). Results: To address these challenges we introduce here methods for local ancestry inference which leverage the structure of linkage disequilibrium in the ancestral population (LAMP-LD), and incorporate the constraint of Mendelian segregation when inferring local ancestry in nuclear family trios (LAMP-HAP). Our algorithms uniquely combine hidden Markov models (HMMs) of haplotype diversity within a novel window-based framework to achieve superior accuracy as compared with published methods. Further, unlike previous methods, the structure of our HMM does not depend on the number of reference haplotypes but on a fixed constant, and it is thereby capable of utilizing large datasets while remaining highly efficient and robust to over-fitting. Through simulations and analysis of real data from 489 nuclear trio families from the mainland US, Puerto Rico and Mexico, we demonstrate that our methods achieve superior accuracy compared with published methods for local ancestry inference in Latinos. Availability: http://lamp.icsi.berkeley.edu/lamp/lampld/ Contact: bpasaniu@hsph.harvard.edu Supplementary information: Supplementary data are available at Bioinformatics online.
0
Citation241
0
Save
0

Characterization of whole-genome autosomal differences of DNA methylation between men and women

Paula Singmann et al.Oct 19, 2015
Disease risk and incidence between males and females reveal differences, and sex is an important component of any investigation of the determinants of phenotypes or disease etiology. Further striking differences between men and women are known, for instance, at the metabolic level. The extent to which men and women vary at the level of the epigenome, however, is not well documented. DNA methylation is the best known epigenetic mechanism to date.In order to shed light on epigenetic differences, we compared autosomal DNA methylation levels between men and women in blood in a large prospective European cohort of 1799 subjects, and replicated our findings in three independent European cohorts. We identified and validated 1184 CpG sites to be differentially methylated between men and women and observed that these CpG sites were distributed across all autosomes. We showed that some of the differentially methylated loci also exhibit differential gene expression between men and women. Finally, we found that the differentially methylated loci are enriched among imprinted genes, and that their genomic location in the genome is concentrated in CpG island shores.Our epigenome-wide association study indicates that differences between men and women are so substantial that they should be considered in design and analyses of future studies.
0
Citation200
0
Save
0

SHAMAN: bin-free randomization, normalization and screening of Hi-C matrices

Netta Cohen et al.Sep 12, 2017
Genome wide chromosome conformation capture (Hi-C) is used to interrogate contact frequencies among genomic elements at multiple scales and intensities, ranging from high frequency interactions among proximal regulatory elements, through specific long-range loops between insulator binding sites and up to rare and transient cis- and trans-chromosomal contacts. Visualization and statistical analysis of Hi-C data is made difficult by the extreme variation in the background frequencies of chromosomal contacts between elements at short and long genomic distances. Here we introduce SHAMAN for performing Hi-C analysis at dynamic scales, without predefined resolution, and while minimizing biases over very large datasets. Algorithmically, we devise a Markov Chain Monte Carlo-like procedure for randomizing contact matrices such that coverage and contact distance distributions are preserved. We combine this strategy with bin-free assessment of contact enrichment using a K-nearest neighbor approach. We show how to use the new method for visualizing contact hotspots and for quantifying differential contacts in matching Hi-C maps. We demonstrate how contact preferences among regulatory elements, including promoters, enhancers and insulators can be assessed with minimal bias by comparing pooled empirical and randomized matrices. Full support for our methods is available in a new software package that is freely available.
0

Cell cycle dynamics of chromosomal organisation at single-cell resolution

Takashi Nagano et al.Dec 15, 2016
Chromosomes in proliferating metazoan cells undergo dramatic structural metamorphoses every cell cycle, alternating between a highly condensed mitotic structure facilitating chromosome segregation, and a decondensed interphase structure accommodating transcription, gene silencing and DNA replication. These cyclical structural transformations have been evident under the microscope for over a century, but their molecular-level analysis is still lacking. Here we use single-cell Hi-C to study chromosome conformations in thousands of individual cells, and discover a continuum of cis-interaction profiles that finely position individual cells along the cell cycle.We show that chromosomal compartments, topological domains (TADs), contact insulation and long-range loops, all defined by ensemble Hi-C maps, are governed by distinct cell cycle dynamics. In particular, DNA replication correlates with build-up of compartments and reduction in TAD insulation, while loops are generally stable from G1 through S and G2. Analysing whole genome 3D structural models using haploid cell data, we discover a radial architecture of chromosomal compartments with distinct epigenomic signatures. Our single-cell data creates an essential new paradigm for the re-interpretation of chromosome conformation maps through the prism of the cell cycle.
Load More