YA
Yoann Anciaux
Author with expertise in Evolutionary Dynamics of Genetic Adaptation and Mutation
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(40% Open Access)
Cited by:
447
h-index:
5
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence

Camille Roux et al.Dec 27, 2016
Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations or reduce the fitness of hybrids—the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts and has been widely discussed in recent years. Here, we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an approximate Bayesian computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life history traits or ecology. Thanks to appropriate modeling of among-locus variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species (when some but not all loci are affected by barriers to gene flow) and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation.
1
Citation436
0
Save
0

Shedding light on the grey zone of speciation along a continuum of genomic divergence

Camille Roux et al.Jun 18, 2016
Abstract Speciation results from the progressive accumulation of mutations that decrease the probability of mating between parental populations, or reduce the fitness of hybrids - the so-called species barriers. The speciation genomic literature, however, is mainly a collection of case studies, each with its own approach and specificities, such that a global view of the gradual process of evolution from one to two species is currently lacking. Of primary importance is the prevalence of gene flow between diverging entities, which is central in most species concepts, and has been widely discussed in recent years. Here we explore the continuum of speciation thanks to a comparative analysis of genomic data from 61 pairs of populations/species of animals with variable levels of divergence. Gene flow between diverging gene pools is assessed under an Approximate Bayesian Computation (ABC) framework. We show that the intermediate "grey zone" of speciation, in which taxonomy is often controversial, spans from 0.5% to 2% of net synonymous divergence, irrespective of species life-history traits or ecology. Thanks to appropriate modeling of among-loci variation in genetic drift and introgression rate, we clarify the status of the majority of ambiguous cases and uncover a number of cryptic species. Our analysis also reveals the high incidence in animals of semi-isolated species, when some but not all loci are affected by barriers to gene flow, and highlights the intrinsic difficulty, both statistical and conceptual, of delineating species in the grey zone of speciation.
0
Citation11
0
Save
0

When sinks become sources: adaptive colonization in asexuals

Florian Lavigne et al.Oct 3, 2018
The successful establishment of a population into a new empty habitat outside of its initial niche is a phenomenon akin to evolutionary rescue in the presence of immigration. It underlies a wide range of processes, such as biological invasions by alien organisms, host shifts in pathogens or the emergence of resistance to pesticides or antibiotics from untreated areas.In this study, we derive an analytically tractable framework to describe the coupled evolutionary and demographic dynamics of asexual populations in a source-sink system. In particular, we analyze the influence of several factors — immigration rate, mutational parameters, and harshness of the stress induced by the change of environment — on the establishment success in the sink (i.e. the formation of a self-sufficient population in the sink), and on the time until establishment. To this aim, we use a classic phenotype-fitness landscape (Fisher’s geometrical model in n dimensions) where source and sink habitats determine distinct phenotypic optima. The harshness of stress, in the sink, is determined by the distance between the fitness optimum in the sink and that of the source. The dynamics of the full distribution of fitness and of population size in the sink are analytically predicted under a strong mutation strong immigration limit where the population is always polymorphic.The resulting eco-evolutionary dynamics depend on mutation and immigration rates in a non straightforward way. Below some mutation rate threshold, establishment always occurs in the sink, following a typical four-phases trajectory of the mean fitness. The waiting time to this establishment is independent of the immigration rate and decreases with the mutation rate. Beyond the mutation rate threshold, lethal mutagenesis impedes establishment and the sink population remains so, albeit with an equilibrium state that depends on the details of the fitness landscape. We use these results to get some insight into possible effects of several management strategies.
0

Population persistence under high mutation rate: from evolutionary rescue to lethal mutagenesis

Yoann Anciaux et al.Jan 17, 2019
Populations may genetically adapt to severe stress that would otherwise cause their extirpation. Recent theoretical work, combining stochastic demography with Fisher’s geometric model of adaptation, has shown how evolutionary rescue becomes unlikely beyond some critical intensity of stress. Increasing mutation rates may however allow adaptation to more intense stress, raising concerns about the effectiveness of treatments against pathogens. This previous work assumes that populations are rescued by the rise of a single resistance mutation. However, even in asexual organisms, rescue can also stem from the accumulation of multiple mutations in a single genome. Here, we extend previous work to study the rescue process in an asexual population where the mutation rate is sufficiently high so that such events may be common. We predict both the ultimate extinction probability of the population and the distribution of extinction times. We compare the accuracy of different approximations covering a large range of mutation rates. Moderate increase in mutation rates favors evolutionary rescue. However, larger increase leads to extinction by the accumulation of a large mutation load, a process called lethal mutagenesis. We discuss how these results could help design “evolution-proof” anti-pathogen treatments that even highly mutable strains could not overcome.
0

Evolutionary Rescue Over A Fitness Landscape

Yoann Anciaux et al.Oct 13, 2017
Evolutionary rescue describes a situation where adaptive evolution prevents the extinction of a population facing a stressing environment. Models of evolutionary rescue could in principle be used to predict the level of stress beyond which extinction becomes likely for species of conservation concern, or conversely the treatment levels most likely to limit the emergence of resistant pests or pathogens. Stress levels are known to affect both the rate of population decline (demographic effect) and the speed of adaptation (evolutionary effect), but the latter aspect has received less attention. Here, we address this issue using Fisher′s Geometric Model of adaptation. In this model, the fitness effects of mutations depend both on the genotype and the environment in which they arise. In particular, the model introduces a dependence between the level of stress, the proportion of rescue mutants, and their costs before the onset of stress. We obtain analytic results under a strong-selection-weak-mutation regime, which we compare to simulations. We show that the effect of the environment on evolutionary rescue can be summarized into a single composite parameter quantifying the effective stress level, which is amenable to empirical measurement. We describe a narrow characteristic stress window over which the rescue probability drops from very likely to very unlikely as the level of stress increases. This drop is sharper than in previous models, as a result of the decreasing proportion of stress-resistant mutations as stress increases. We discuss how to test these predictions with rescue experiments across gradients of stress.