KW
K. Wommack
Author with expertise in Ecology and Evolution of Viruses in Ecosystems
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(70% Open Access)
Cited by:
1,054
h-index:
34
/
i10-index:
49
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Metagenomics: Read Length Matters

K. Wommack et al.Jan 12, 2008
Obtaining an unbiased view of the phylogenetic composition and functional diversity within a microbial community is one central objective of metagenomic analysis. New technologies, such as 454 pyrosequencing, have dramatically reduced sequencing costs, to a level where metagenomic analysis may become a viable alternative to more-focused assessments of the phylogenetic (e.g., 16S rRNA genes) and functional diversity of microbial communities. To determine whether the short (approximately 100 to 200 bp) sequence reads obtained from pyrosequencing are appropriate for the phylogenetic and functional characterization of microbial communities, the results of BLAST and COG analyses were compared for long (approximately 750 bp) and randomly derived short reads from each of two microbial and one virioplankton metagenome libraries. Overall, BLASTX searches against the GenBank nr database found far fewer homologs within the short-sequence libraries. This was especially pronounced for a Chesapeake Bay virioplankton metagenome library. Increasing the short-read sampling depth or the length of derived short reads (up to 400 bp) did not completely resolve the discrepancy in BLASTX homolog detection. Only in cases where the long-read sequence had a close homolog (low BLAST E-score) did the derived short-read sequence also find a significant homolog. Thus, more-distant homologs of microbial and viral genes are not detected by short-read sequences. Among COG hits, derived short reads sampled at a depth of two short reads per long read missed up to 72% of the COG hits found using long reads. Noting the current limitation in computational approaches for the analysis of short sequences, the use of short-read-length libraries does not appear to be an appropriate tool for the metagenomic characterization of microbial communities.
0
Citation327
0
Save
0

A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes

Joshua Weitz et al.Jan 30, 2015
Abstract Viral lysis of microbial hosts releases organic matter that can then be assimilated by nontargeted microorganisms. Quantitative estimates of virus-mediated recycling of carbon in marine waters, first established in the late 1990s, were originally extrapolated from marine host and virus densities, host carbon content and inferred viral lysis rates. Yet, these estimates did not explicitly incorporate the cascade of complex feedbacks associated with virus-mediated lysis. To evaluate the role of viruses in shaping community structure and ecosystem functioning, we extend dynamic multitrophic ecosystem models to include a virus component, specifically parameterized for processes taking place in the ocean euphotic zone. Crucially, we are able to solve this model analytically, facilitating evaluation of model behavior under many alternative parameterizations. Analyses reveal that the addition of a virus component promotes the emergence of complex communities. In addition, biomass partitioning of the emergent multitrophic community is consistent with well-established empirical norms in the surface oceans. At steady state, ecosystem fluxes can be probed to characterize the effects that viruses have when compared with putative marine surface ecosystems without viruses. The model suggests that ecosystems with viruses will have (1) increased organic matter recycling, (2) reduced transfer to higher trophic levels and (3) increased net primary productivity. These model findings support hypotheses that viruses can have significant stimulatory effects across whole-ecosystem scales. We suggest that existing efforts to predict carbon and nutrient cycling without considering virus effects are likely to miss essential features of marine food webs that regulate global biogeochemical cycles.
0
Paper
Citation232
0
Save
0

Iroki: automatic customization and visualization of phylogenetic trees

Moore Rm et al.Feb 6, 2017
ABSTRACT Phylogenetic trees are an important analytical tool for evaluating community diversity and evolutionary history. In the case of microorganisms, the decreasing cost of sequencing has enabled researchers to generate ever-larger sequence datasets, which in turn have begun to fill gaps in the evolutionary history of microbial groups. However, phylogenetic analyses of these types of datasets create complex trees that can be challenging to interpret. Scientific inferences made by visual inspection of phylogenetic trees can be simplified and enhanced by customizing various parts of the tree. Yet, manual customization is time-consuming and error prone, and programs designed to assist in batch tree customization often require programming experience or complicated file formats for annotation. Iroki, a user-friendly web interface for tree visualization, addresses these issues by providing automatic customization of large trees based on metadata contained in tab-separated text files. Iroki’s utility for exploring biological and ecological trends in sequencing data was demonstrated through a variety of microbial ecology applications in which trees with hundreds to thousands of leaf nodes were customized according to extensive collections of metadata. The Iroki web application and documentation are available at https://www.iroki.net or through the VIROME portal ( http://virome.dbi.udel.edu ). Iroki’s source code is released under the MIT license and is available at https://github.com/mooreryan/iroki .
0
Citation5
0
Save
0

Re-examining the relationship between virus and microbial cell abundances in the global oceans

Charles Wigington et al.Aug 26, 2015
Marine viruses are critical drivers of ocean biogeochemistry and their abundances vary spatiotem- porally in the global oceans, with upper estimates exceeding 10 8 per ml. Over many years, a con- sensus has emerged that virus abundances are typically 10-fold higher than prokaryote abundances. The use of a fixed-ratio suggests that the relationship between virus and prokaryote abundances is both predictable and linear. However, the true explanatory power of a linear relationship and its robustness across diverse ocean environments is unclear. Here, we compile 5671 prokaryote and virus abundance estimates from 25 distinct marine surveys to characterize the relationship between virus and prokaryote abundances. We find that the median virus-to-prokaryote ratio (VPR) is 10:1 and 16:1 in the near- and sub-surface oceans, respectively. Nonetheless, we observe substantial variation in the VPR and find either no or limited explanatory power using fixed-ratio models. Instead, virus abundances are better described as nonlinear, power-law functions of prokaryote abundances - par- ticularly when considering relationships within distinct marine surveys. Estimated power-laws have scaling exponents that are typically less than 1, signifying that the VPR decreases with prokaryote density, rather than remaining fixed. The emergence of power-law scaling presents a challenge for mechanistic models seeking to understand the ecological causes and consequences of marine virus- microbe interactions. Such power-law scaling also implies that efforts to average viral effects on microbial mortality and biogeochemical cycles using “representative” abundances or abundance- ratios need to be refined if they are to be utilized to make quantitative predictions at regional or global ocean scales.
10

Spontaneously produced lysogenic phages are an important component of the soybean Bradyrhizobium mobilome

Prasanna Joglekar et al.May 9, 2022
Abstract The ability to nodulate and fix atmospheric nitrogen in soybean root nodules makes soybean Bradyrhizobium spp. (SB) critical in supplying humanity’s nutritional needs. The intricacies of SB-plant interactions have been studied extensively; however, bradyrhizobial ecology as influenced by phages has received somewhat less attention even though these interactions may significantly impact soybean yield. In batch culture four SB strains, S06B ( B. japonicum , S06B-Bj), S10J ( B. japonicum , S10J-Bj), USDA 122 ( B. diazoefficiens , USDA 122-Bd), and USDA 76 T ( B. elkanii , USDA 76-Be), spontaneously (without apparent exogenous chemical or physical induction) produced phages throughout the growth cycle; for three strains, phage concentrations exceeded cell numbers by ca. 3-fold after 48 h incubation. Observed spontaneously produced phages (SPP) were tailed. Phage terminase large-subunit protein phylogeny revealed possible differences in phage packaging and replication mechanisms. Bioinformatic analyses predicted multiple prophage regions within each SB genome preventing accurate identification of SPP genomes. A DNA sequencing approach was developed that accurately delineated the boundaries of four SPP genomes within three of the SB chromosomes. Read mapping suggested that the SPP are capable of transduction. In addition to the phages, bacterial strains S06B-Bj and USDA 76-Be were rich in mobile elements consisting of insertion sequences (IS) and large, conjugable, broad host range plasmids. The prevalence of SPP along with IS and plasmids indicate that horizontal gene transfer likely plays an outsized role in SB ecology and may subsequently impact soybean productivity. Importance Previous studies have shown that IS and plasmids mediate horizontal gene transfer (HGT) of symbiotic nodulation (nod) genes in SB; however, these events require close cell to cell contact which could be limited in soil environments. Bacteriophage assisted gene transduction through spontaneously produced prophages could provide stable means of HGT not limited by the constraints of proximal cell to cell contact. Phage mediated HGT events could be important in SB population ecology with concomitant impacts on soybean agriculture.
10
0
Save
9

Ubiquitous, B12-dependent virioplankton utilizing ribonucleotide triphosphate reductase demonstrate interseasonal dynamics and associate with a diverse range of bacterial hosts in the pelagic ocean

Ling-Yi Wu et al.Mar 14, 2023
ABSTRACT Through infection and lysis of their coexisting bacterial hosts, viruses impact the biogeochemical cycles sustaining globally significant pelagic oceanic ecosystems. Currently, little is known of the ecological interactions between lytic viruses and their bacterial hosts underlying these biogeochemical impacts at ecosystem scales. This study focused on populations of lytic viruses carrying the B 12 - dependent Class II monomeric ribonucleotide reductase (RNR) gene, ribonucleotide triphosphate reductase (RTPR), documenting seasonal changes in pelagic virioplankton and bacterioplankton using amplicon sequences of RTPR and the 16S rRNA gene, respectively. Amplicon sequence libraries were analyzed using compositional data analysis tools that account for the compositional nature of these data. Both virio- and bacterioplankton communities responded to environmental changes typically seen across seasonal cycles as well as shorter term upwelling–downwelling events. Defining RTPR-carrying viral populations according to major phylogenetic clades proved a more robust means of exploring virioplankton ecology than operational taxonomic units defined by percent sequence homology. Virioplankton RTPR populations showed positive associations with a broad phylogenetic diversity of bacterioplankton including dominant taxa within pelagic oceanic ecosystems such as Prochlorococcus and SAR11. Temporal changes in RTPR-virioplankton, occurring as both free viruses and within infected cells, indicated possible viral–host pairs undergoing sustained infection and lysis cycles throughout the seasonal study. Phylogenetic relationships inferred from RTPR sequences mirrored ecological patterns in virio- and bacterioplankton populations demonstrating possible genome to phenome associations for an essential viral replication gene.
1

PASV: Automatic protein partitioning and validation using conserved residues

Moore Rm et al.Jan 21, 2021
Abstract Background Increasingly, researchers use protein-coding genes from targeted PCR amplification or direct metagenomic sequencing in community and population ecology. Analysis of protein-coding genes presents different challenges from those encountered in traditional SSU rRNA studies. Most protein-coding sequences are annotated based on homology to other computationally-annotated sequences, which can lead to inaccurate annotations. Therefore, the results of sensitive homology searches must be validated to remove false-positives and assess functionality. Multiple lines of in silico evidence can be gathered by examining conserved domains and residues identified through biochemical investigations. However, manually validating sequences in this way can be time consuming and error prone, especially in large environmental studies. Results An automated pipeline for protein active site validation (PASV) was developed to improve validation and partitioning accuracy for protein-coding sequences, combining multiple sequence alignment with expert domain knowledge. PASV was tested using commonly misannotated proteins: ribonucleotide reductase (RNR), alternative oxidase (AOX), and plastid terminal oxidase (PTOX). PASV partitioned 9,906 putative Class I alpha and Class II RNR sequences from bycatch in a global viral metagenomic investigation with >99% true positive and true negative rates. PASV predicted the class of 2,579 RNR sequences in >98% agreement with manual annotations. PASV correctly partitioned all 336 tested AOX and PTOX sequences. Conclusions PASV provides an automated and accurate way to address post-homology search validation and partitioning of protein-coding marker genes. Source code is released under the MIT license and is found with documentation and usage examples on GitHub at https://github.com/mooreryan/pasv .
0

CRISPR spacers indicate preferential matching of specific virioplankton genes

Daniel Nasko et al.Dec 5, 2018
Viral infection exerts selection pressure on marine microbes as viral-induced cell lysis causes 20 to 50% of cell mortality resulting in fluxes of biomass into oceanic dissolved organic matter. Archaeal and bacterial populations can defend against viral infection using the CRISPR-Cas system which relies on specific matching between a spacer sequence and a viral gene. If a CRISPR spacer match to any gene within a viral genome is equally effective in preventing lysis, then no viral genes should be preferentially matched by CRISPR spacers. However, if there are differences in effectiveness then certain viral genes may demonstrate a greater frequency of CRISPR spacer matches. Indeed, homology search analyses of bacterioplankton CRISPR spacer sequences against virioplankton sequences revealed preferential matching of replication proteins, nucleic acid binding proteins, and viral structural proteins. Positive selection pressure for effective viral defense is one parsimonious explanation for these observations. CRISPR spacers from virioplankton metagenomes preferentially matched methyltransferase and phage integrase genes within virioplankton sequences. These viriolankton CRISPR spacers may assist infected host cells in defending against competing phage. Analyses also revealed that half of the spacer-matched viral genes were unknown and that some genes matched several spacers and some spacers matched multiple genes, a many-to-many relationship. Thus, CRISPR spacer matching may be an evolutionary algorithm, agnostically identifying those genes under stringent selection pressure for sustaining viral infection and lysis. Investigating this subset of viral genes could reveal those genetic mechanisms essential to viral-host interactions and provide new technologies for optimizing CRISPR defense in beneficial microbes.
0

Reannotation of the ribonucleotide reductase in a cyanophage reveals life history strategies within the virioplankton

Amelia Harrison et al.Nov 9, 2018
Ribonucleotide reductases (RNRs) are ancient enzymes that catalyze the reduction of ribonucleotides to deoxyribonucleotides. They are required for virtually all cellular life and are prominent within viral genomes. RNRs share a common ancestor and must generate a protein radical for direct ribonucleotide reduction. The mechanisms by which RNRs produce radicals are diverse and divide RNRs into three major classes and several subclasses. The diversity of radical generation methods means that cellular organisms and viruses typically contain the RNR best-suited to the environmental conditions surrounding DNA replication. However, such diversity has also fostered high rates of RNR misannotation within subject sequence databases. These misannotations have resulted in incorrect translative presumptions of RNR biochemistry and have diminished the utility of this marker gene for ecological studies of viruses. We discovered a misannotation of the RNR gene within the Prochlorococcus phage P-SSP7 genome, which caused a chain of misannotations within commonly observed RNR genes from marine virioplankton communities. These RNRs are found in marine cyanopodo- and cyanosiphoviruses and are currently misannotated as Class II RNRs, which are O2-independent and require cofactor B12. In fact, these cyanoviral RNRs are Class I enzymes that are O2-dependent and may require a di-metal cofactor made of Fe, Mn, or a combination of the two metals. The discovery of an overlooked Class I β subunit in the P-SSP7 genome, together with phylogenetic analysis of the α and β subunits confirms that the RNR from P-SSP7 is a Class I RNR. Phylogenetic and conserved residue analyses also suggest that the P-SSP7 RNR may constitute a novel Class I subclass. The reannotation of the RNR clade represented by P-SSP7 means that most lytic cyanophage contain Class I RNRs, while their hosts, B12-producing Synechococcus and Prochlorococcus, contain Class II RNRs. By using a Class I RNR, cyanophage avoid a dependence on host-produced B12, a more effective strategy for a lytic virus. The discovery of a novel RNR β subunit within cyanopodoviruses also implies that some unknown viral genes may be familiar cellular genes that are too divergent for homology-based annotation methods to identify.