ZW
Zhensong Wei
Author with expertise in Quantitative Imaging of Living Cells with Holography
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(83% Open Access)
Cited by:
1,737
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Deep learning enables cross-modality super-resolution in fluorescence microscopy

Hongda Wang et al.Dec 7, 2018
We present deep-learning-enabled super-resolution across different fluorescence microscopy modalities. This data-driven approach does not require numerical modeling of the imaging process or the estimation of a point-spread-function, and is based on training a generative adversarial network (GAN) to transform diffraction-limited input images into super-resolved ones. Using this framework, we improve the resolution of wide-field images acquired with low-numerical-aperture objectives, matching the resolution that is acquired using high-numerical-aperture objectives. We also demonstrate cross-modality super-resolution, transforming confocal microscopy images to match the resolution acquired with a stimulated emission depletion (STED) microscope. We further demonstrate that total internal reflection fluorescence (TIRF) microscopy images of subcellular structures within cells and tissues can be transformed to match the results obtained with a TIRF-based structured illumination microscope. The deep network rapidly outputs these super-resolved images, without any iterations or parameter search, and could serve to democratize super-resolution imaging. Deep learning enables cross-modality super-resolution imaging, including confocal-to-STED and TIRF-to-TIRF-SIM image transformation. Imaging of a larger FOV and greater depth of field is possible with higher resolution and SNR at lower light doses.
0

PhaseStain: the digital staining of label-free quantitative phase microscopy images using deep learning

Yair Rivenson et al.Feb 6, 2019
Abstract Using a deep neural network, we demonstrate a digital staining technique, which we term PhaseStain, to transform the quantitative phase images (QPI) of label-free tissue sections into images that are equivalent to the brightfield microscopy images of the same samples that are histologically stained. Through pairs of image data (QPI and the corresponding brightfield images, acquired after staining), we train a generative adversarial network and demonstrate the effectiveness of this virtual-staining approach using sections of human skin, kidney, and liver tissue, matching the brightfield microscopy images of the same samples stained with Hematoxylin and Eosin, Jones’ stain, and Masson’s trichrome stain, respectively. This digital-staining framework may further strengthen various uses of label-free QPI techniques in pathology applications and biomedical research in general, by eliminating the need for histological staining, reducing sample preparation related costs and saving time. Our results provide a powerful example of some of the unique opportunities created by data-driven image transformations enabled by deep learning.
0

Extended depth-of-field in holographic imaging using deep-learning-based autofocusing and phase recovery

Yichen Wu et al.May 25, 2018
Holography encodes the three dimensional (3D) information of a sample in the form of an intensity-only recording. However, to decode the original sample image from its hologram(s), auto-focusing and phase-recovery are needed, which are in general cumbersome and time-consuming to digitally perform. Here we demonstrate a convolutional neural network (CNN) based approach that simultaneously performs auto-focusing and phase-recovery to significantly extend the depth-of-field (DOF) in holographic image reconstruction. For this, a CNN is trained by using pairs of randomly de-focused back-propagated holograms and their corresponding in-focus phase-recovered images. After this training phase, the CNN takes a single back-propagated hologram of a 3D sample as input to rapidly achieve phase-recovery and reconstruct an in focus image of the sample over a significantly extended DOF. This deep learning based DOF extension method is non-iterative, and significantly improves the algorithm time-complexity of holographic image reconstruction from O(nm) to O(1), where n refers to the number of individual object points or particles within the sample volume, and m represents the focusing search space within which each object point or particle needs to be individually focused. These results highlight some of the unique opportunities created by data-enabled statistical image reconstruction methods powered by machine learning, and we believe that the presented approach can be broadly applicable to computationally extend the DOF of other imaging modalities.
0

Computationally Efficient Approach for Evaluating Eco-Approach and Departure for Heavy-Duty Trucks

Zhensong Wei et al.Jun 19, 2024
Connected vehicle-based eco-driving applications have emerged as effective tools for improving energy efficiency and environmental sustainability in the transportation system. Previous research mainly focused on vehicle-level or link-level technology development and assessment using real-world field tests or traffic microsimulation models. There is still high uncertainty in understanding and predicting the impact of these connected eco-driving applications when they are implemented on a large scale. In this paper, a computationally efficient and practically feasible methodology is proposed to estimate the potential energy savings from one eco-driving application for heavy-duty trucks named Eco-Approach and Departure (EAD). The proposed methodology enables corridor-level or road network–level energy saving estimates using only road length, speed limit, and travel time at each intersection as inputs. This technique was validated using EAD performance data from traffic microsimulation models of four trucking corridors in Carson, California; the estimates of energy savings using the proposed methodology were around 1% average error. The validated models were subsequently applied to estimate potential energy savings from EAD along truck routes in Carson. The results show that the potential energy savings vary by corridor, ranging from 1% to 25% with an average of 14%.