AM
Anja Mezger
Author with expertise in Comprehensive Integration of Single-Cell Transcriptomic Data
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
380
h-index:
14
/
i10-index:
15
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia

Jeffrey Granja et al.Dec 1, 2019
+10
L
S
J
Identifying the causes of human diseases requires deconvolution of abnormal molecular phenotypes spanning DNA accessibility, gene expression and protein abundance1-3. We present a single-cell framework that integrates highly multiplexed protein quantification, transcriptome profiling and analysis of chromatin accessibility. Using this approach, we establish a normal epigenetic baseline for healthy blood development, which we then use to deconvolve aberrant molecular features within blood from patients with mixed-phenotype acute leukemia4,5. Despite widespread epigenetic heterogeneity within the patient cohort, we observe common malignant signatures across patients as well as patient-specific regulatory features that are shared across phenotypic compartments of individual patients. Integrative analysis of transcriptomic and chromatin-accessibility maps identified 91,601 putative peak-to-gene linkages and transcription factors that regulate leukemia-specific genes, such as RUNX1-linked regulatory elements proximal to the marker gene CD69. These results demonstrate how integrative, multiomic analysis of single cells within the framework of normal development can reveal both distinct and shared molecular mechanisms of disease from patient samples.
0
Citation380
0
Save
0

Landscape of stimulation-responsive chromatin across diverse human immune cells

Diego Calderon et al.Sep 5, 2018
+15
A
M
D
The immune system is controlled by a balanced interplay among specialized cell types transitioning between resting and stimulated states. Despite its importance, the regulatory landscape of this system has not yet been fully characterized. To address this gap, we collected ATAC-seq and RNA-seq data under resting and stimulated conditions for 25 immune cell types from peripheral blood of four healthy individuals, and seven cell types from three fetal thymus samples. We found that stimulation caused widespread chromatin remodeling, including a large class of response elements shared between stimulated B and T cells. Furthermore, several autoimmune traits showed significant heritability in stimulation-responsive elements from distinct cell types, highlighting the critical importance of these cell states in autoimmunity. Use of allele-specific read-mapping identified thousands of variants that alter chromatin accessibility in particular conditions. Notably, variants associated with changes in stimulation-specific chromatin accessibility were not enriched for associations with gene expression regulation in whole blood -- a tissue commonly used in eQTL studies. Thus, large-scale maps of variants associated with gene regulation lack a condition important for understanding autoimmunity. As a proof-of-principle we identified variant rs6927172, which links stimulated T cell-specific chromatin dysregulation in the TNFAIP3 locus to ulcerative colitis and rheumatoid arthritis. Overall, our results provide a broad resource of chromatin landscape dynamics and highlight the need for large-scale characterization of effects of genetic variation in stimulated cells.
0

A single cell framework for multi-omic analysis of disease identifies malignant regulatory signatures in mixed phenotype acute leukemia

Jeffrey Granja et al.Jul 9, 2019
+9
L
S
J
In order to identify the molecular determinants of human diseases, such as cancer, that arise from a diverse range of tissue, it is necessary to accurately distinguish normal and pathogenic cellular programs. Here we present a novel approach for single-cell multi-omic deconvolution of healthy and pathological molecular signatures within phenotypically heterogeneous malignant cells. By first creating immunophenotypic, transcriptomic and epigenetic single-cell maps of hematopoietic development from healthy peripheral blood and bone marrow mononuclear cells, we identify cancer-specific transcriptional and chromatin signatures from single cells in a cohort of mixed phenotype acute leukemia (MPAL) clinical samples. MPALs are a high-risk subtype of acute leukemia characterized by a heterogeneous malignant cell population expressing both myeloid and lymphoid lineage-specific markers. Our results reveal widespread heterogeneity in the pathogenetic gene regulatory and expression programs across patients, yet relatively consistent changes within patients even across malignant cells occupying diverse portions of the hematopoietic lineage. An integrative analysis of transcriptomic and epigenetic maps identifies 91,601 putative gene-regulatory interactions and classifies a number of transcription factors that regulate leukemia specific genes, including RUNX1-linked regulatory elements proximal to CD69. This work provides a template for integrative, multi-omic analysis for the interpretation of pathogenic molecular signatures in the context of developmental origin.
0

High-throughput chromatin accessibility profiling at single-cell resolution

Anja Mezger et al.Apr 28, 2018
+7
A
M
A
We have developed a high-throughput single-cell ATAC-seq (assay for transposition of accessible chromatin) method to measure physical access to DNA in whole cells. Our approach integrates fluorescence imaging and addressable reagent deposition across a massively parallel (5184) nano-well array, yielding a nearly 20-fold improvement in throughput (up to ~1800 cells/chip, 4-5 hour on-chip processing time) and cost (~98¢ per cell) compared to prior microfluidic implementations. We applied this method to measure regulatory variation in Peripheral Blood Mononuclear Cells (PBMCs) and show robust, de- novo clustering of single cells by hematopoietic cell type.
0

Pooled optical screens in human cells

David Feldman et al.Aug 2, 2018
+5
J
A
D
Large-scale genetic screens play a key role in the systematic discovery of genes underlying cellular phenotypes. Pooling of genetic perturbations greatly increases screening throughput, but has so far been limited to screens of enrichments defined by cell fitness and flow cytometry, or to comparatively low-throughput single cell gene expression profiles. Although microscopy is a rich source of spatial and temporal information about mammalian cells, high-content imaging screens have been restricted to much less efficient arrayed formats. Here, we introduce an optical method to link perturbations and their phenotypic outcomes at the single-cell level in a pooled setting. Barcoded perturbations are read out by targeted in situ sequencing following image-based phenotyping. We apply this technology to screen a focused set of 952 genes across >3 million cells for involvement in NF-κB activation by imaging the translocation of RelA (p65) to the nucleus, recovering 20 known pathway components and 3 novel candidate positive regulators of IL-1β and TNFα-stimulated immune responses.