AT
Alessio Tovaglieri
Author with expertise in Diversity and Function of Gut Microbiome
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(60% Open Access)
Cited by:
1,158
h-index:
12
/
i10-index:
12
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Development of a primary human Small Intestine-on-a-Chip using biopsy-derived organoids

Magdalena Kasendra et al.Feb 7, 2018
+10
A
A
M
Abstract Here we describe a method for fabricating a primary human Small Intestine-on-a-Chip (Intestine Chip) containing epithelial cells isolated from healthy regions of intestinal biopsies. The primary epithelial cells are expanded as 3D organoids, dissociated, and cultured on a porous membrane within a microfluidic device with human intestinal microvascular endothelium cultured in a parallel microchannel under flow and cyclic deformation. In the Intestine Chip, the epithelium forms villi-like projections lined by polarized epithelial cells that undergo multi-lineage differentiation similar to that of intestinal organoids, however, these cells expose their apical surfaces to an open lumen and interface with endothelium. Transcriptomic analysis also indicates that the Intestine Chip more closely mimics whole human duodenum in vivo when compared to the duodenal organoids used to create the chips. Because fluids flowing through the lumen of the Intestine Chip can be collected continuously, sequential analysis of fluid samples can be used to quantify nutrient digestion, mucus secretion and establishment of intestinal barrier function over a period of multiple days in vitro . The Intestine Chip therefore may be useful as a research tool for applications where normal intestinal function is crucial, including studies of metabolism, nutrition, infection, and drug pharmacokinetics, as well as personalized medicine.
0
Citation591
0
Save
0

A complex human gut microbiome cultured in an anaerobic intestine-on-a-chip

Sasan Jalili–Firoozinezhad et al.May 13, 2019
+14
E
F
S
The diverse bacterial populations that comprise the commensal microbiome of the human intestine play a central role in health and disease. A method that sustains complex microbial communities in direct contact with living human intestinal cells and their overlying mucus layer in vitro would thus enable the investigation of host-microbiome interactions. Here, we show the extended coculture of living human intestinal epithelium with stable communities of aerobic and anaerobic human gut microbiota, using a microfluidic intestine-on-a-chip that permits the control and real-time assessment of physiologically relevant oxygen gradients. When compared to aerobic coculture conditions, the establishment of a transluminal hypoxia gradient in the chip increased intestinal barrier function and sustained a physiologically relevant level of microbial diversity, consisting of over 200 unique operational taxonomic units from 11 different genera and an abundance of obligate anaerobic bacteria, with ratios of Firmicutes and Bacteroidetes similar to those observed in human faeces. The intestine-on-a-chip may serve as a discovery tool for the development of microbiome-related therapeutics, probiotics and nutraceuticals.
0

Human colon-on-a-chip enables continuous in vitro analysis of colon mucus layer accumulation and physiology

Alexandra Sontheimer-Phelps et al.Aug 20, 2019
+14
A
D
A
ABSTRACT Background & Aims The mucus layer in the human colon protects against commensal bacteria and pathogens, and defects in its unique bilayered structure contribute to intestinal disorders, such as ulcerative colitis. However, our understanding of colon physiology is limited by the lack of in vitro models that replicate human colonic mucus layer structure and function. Here, we investigated if combining organ-on-a-chip and organoid technologies can be leveraged to develop a human-relevant in vitro model of colon mucus physiology. Methods A human colon-on-a-chip (Colon Chip) microfluidic device lined by primary patient-derived colonic epithelial cells was used to recapitulate mucus bilayer formation, and to visualize mucus accumulation in living cultures non-invasively. Results The Colon Chip supports spontaneous goblet cell differentiation and accumulation of a mucus bilayer with impenetrable and penetrable layers, and a thickness similar to that observed in human colon, while maintaining a subpopulation of proliferative epithelial cells. Live imaging of the mucus layer formation on-chip revealed that stimulation of the colonic epithelium with prostaglandin E2, which is elevated during inflammation, causes rapid mucus volume expansion via an NKCC1 ion channel-dependent increase in its hydration state, but no increase in de novo mucus secretion. Conclusion This study is the first to demonstrate production of colonic mucus with a physiologically relevant bilayer structure in vitro , which can be analyzed in real-time non-invasively. The Colon Chip may offer a new preclinical tool to analyze the role of mucus in human intestinal homeostasis as well as diseases, such as ulcerative colitis and cancer.
0
Citation1
0
Save
0

Species-specific enhancement of enterohemorrhagic E. Coli pathogenesis mediated by microbiome metabolites

Alessio Tovaglieri et al.Jan 7, 2019
+12
M
T
A
ABSTRACT BACKGROUND Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic E. coli (EHEC) infection whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities. RESULTS We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites -- 4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid -- that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity. CONCLUSION Organ on chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.
0

Complex human gut microbiome cultured in anaerobic human intestine chips

Hossein Baharvand et al.Sep 20, 2018
+13
F
S
H
The diverse bacterial populations that comprise the commensal microbiota of the human intestine play a central role in health and disease, yet no method is available to sustain these complex microbial communities in direct contact with living human intestinal cells and their overlying mucus layer in vitro. Here we describe a human Organ-on-a-Chip (Organ Chip) microfluidic platform that permits control and real-time assessment of physiologically-relevant oxygen gradients, and which enables co-culture of living human intestinal epithelium with stable communities of aerobic and anaerobic human gut microbiota. When compared to aerobic co-culture conditions, establishment of a transluminal hypoxia gradient sustained higher microbial diversity with over 200 unique operational taxonomic units (OTUs) from 11 different genera, and an abundance of obligate anaerobic bacteria with ratios of Firmicutes and Bacteroidetes similar to those observed in human feces, in addition to increasing intestinal barrier function. The ability to culture human intestinal epithelium overlaid by complex human gut microbial communities within microfluidic Intestine Chips may enable investigations of host-microbiome interactions that were not possible previously, and serve as a discovery tool for development of new microbiome-related therapeutics, probiotics, and nutraceuticals.