Abstract Variation in metabolite levels reflects individual differences in genetic and environmental factors. Here, we investigated the role of these factors in urinary metabolomics data in children. We examined the effects of sex and age on 86 metabolites, as measured on three metabolomics platforms that target amines, organic acids, and steroid hormones. Next, we estimated their heritability in a twin cohort of 1300 twins (age range: 5.7 - 12.9 years). We observed associations between age and 50 metabolites and between sex and 21 metabolites. The mean monozygotic (MZ) and dizygotic (DZ) correlations for urinary metabolites were 0.51 (range: 0.25-0.75) and 0.16 (range: 0.01-0.46) for the amines, 0.52 (range: 0.33-0.64) and 0.23 (range: 0.07-0.35) for the organic acids, and 0.61 (range: 0.43-0.81) and 0.25 (range: 0.11-0.44) for the steroids. Broad-sense heritability was 0.49 (range: 0.25-0.64), 0.50 (range: 0.33-0.62), and 0.64 (range: 0.43-0.81) for 50 amines, 13 organic acids, and 6 steroids, and narrow-sense heritability was 0.50 (range: 0.37-0.68), 0.50 (0.23-0.61), and 0.47 (range: 0.32-0.70) for 6 amines, 7 organic acids, and 4 steroids. We conclude that urinary metabolites in children have substantial heritability, with similar estimates for amines and organic acids, and higher estimates for steroid hormones.