CP
Chiara Poletto
Author with expertise in Modeling the Dynamics of COVID-19 Pandemic
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
13
(46% Open Access)
Cited by:
2,542
h-index:
31
/
i10-index:
56
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Preparedness and vulnerability of African countries against importations of COVID-19: a modelling study

Marius Gilbert et al.Feb 20, 2020
The novel coronavirus disease 2019 (COVID-19) epidemic has spread from China to 25 countries. Local cycles of transmission have already occurred in 12 countries after case importation. In Africa, Egypt has so far confirmed one case. The management and control of COVID-19 importations heavily rely on a country's health capacity. Here we evaluate the preparedness and vulnerability of African countries against their risk of importation of COVID-19.We used data on the volume of air travel departing from airports in the infected provinces in China and directed to Africa to estimate the risk of importation per country. We determined the country's capacity to detect and respond to cases with two indicators: preparedness, using the WHO International Health Regulations Monitoring and Evaluation Framework; and vulnerability, using the Infectious Disease Vulnerability Index. Countries were clustered according to the Chinese regions contributing most to their risk.Countries with the highest importation risk (ie, Egypt, Algeria, and South Africa) have moderate to high capacity to respond to outbreaks. Countries at moderate risk (ie, Nigeria, Ethiopia, Sudan, Angola, Tanzania, Ghana, and Kenya) have variable capacity and high vulnerability. We identified three clusters of countries that share the same exposure to the risk originating from the provinces of Guangdong, Fujian, and the city of Beijing, respectively.Many countries in Africa are stepping up their preparedness to detect and cope with COVID-19 importations. Resources, intensified surveillance, and capacity building should be urgently prioritised in countries with moderate risk that might be ill-prepared to detect imported cases and to limit onward transmission.EU Framework Programme for Research and Innovation Horizon 2020, Agence Nationale de la Recherche.
0
Paper
Citation1,178
0
Save
0

Human Mobility Networks, Travel Restrictions, and the Global Spread of 2009 H1N1 Pandemic

Paolo Bajardi et al.Jan 31, 2011
After the emergence of the H1N1 influenza in 2009, some countries responded with travel-related controls during the early stage of the outbreak in an attempt to contain or slow down its international spread. These controls along with self-imposed travel limitations contributed to a decline of about 40% in international air traffic to/from Mexico following the international alert. However, no containment was achieved by such restrictions and the virus was able to reach pandemic proportions in a short time. When gauging the value and efficacy of mobility and travel restrictions it is crucial to rely on epidemic models that integrate the wide range of features characterizing human mobility and the many options available to public health organizations for responding to a pandemic. Here we present a comprehensive computational and theoretical study of the role of travel restrictions in halting and delaying pandemics by using a model that explicitly integrates air travel and short-range mobility data with high-resolution demographic data across the world and that is validated by the accumulation of data from the 2009 H1N1 pandemic. We explore alternative scenarios for the 2009 H1N1 pandemic by assessing the potential impact of mobility restrictions that vary with respect to their magnitude and their position in the pandemic timeline. We provide a quantitative discussion of the delay obtained by different mobility restrictions and the likelihood of containing outbreaks of infectious diseases at their source, confirming the limited value and feasibility of international travel restrictions. These results are rationalized in the theoretical framework characterizing the invasion dynamics of the epidemics at the metapopulation level.
0

Real-time numerical forecast of global epidemic spreading: case study of 2009 A/H1N1pdm

Michele Tizzoni et al.Dec 1, 2012
Abstract Background Mathematical and computational models for infectious diseases are increasingly used to support public-health decisions; however, their reliability is currently under debate. Real-time forecasts of epidemic spread using data-driven models have been hindered by the technical challenges posed by parameter estimation and validation. Data gathered for the 2009 H1N1 influenza crisis represent an unprecedented opportunity to validate real-time model predictions and define the main success criteria for different approaches. Methods We used the Global Epidemic and Mobility Model to generate stochastic simulations of epidemic spread worldwide, yielding (among other measures) the incidence and seeding events at a daily resolution for 3,362 subpopulations in 220 countries. Using a Monte Carlo Maximum Likelihood analysis, the model provided an estimate of the seasonal transmission potential during the early phase of the H1N1 pandemic and generated ensemble forecasts for the activity peaks in the northern hemisphere in the fall/winter wave. These results were validated against the real-life surveillance data collected in 48 countries, and their robustness assessed by focusing on 1) the peak timing of the pandemic; 2) the level of spatial resolution allowed by the model; and 3) the clinical attack rate and the effectiveness of the vaccine. In addition, we studied the effect of data incompleteness on the prediction reliability. Results Real-time predictions of the peak timing are found to be in good agreement with the empirical data, showing strong robustness to data that may not be accessible in real time (such as pre-exposure immunity and adherence to vaccination campaigns), but that affect the predictions for the attack rates. The timing and spatial unfolding of the pandemic are critically sensitive to the level of mobility data integrated into the model. Conclusions Our results show that large-scale models can be used to provide valuable real-time forecasts of influenza spreading, but they require high-performance computing. The quality of the forecast depends on the level of data integration, thus stressing the need for high-quality data in population-based models, and of progressive updates of validated available empirical knowledge to inform these models.
0

Analytical Computation of the Epidemic Threshold on Temporal Networks

Eugenio Valdano et al.Apr 8, 2015
The time variation of contacts in a networked system may fundamentally alter the properties of spreading processes and affect the condition for large-scale propagation, as encoded in the epidemic threshold. Despite the great interest in the problem for the physics, applied mathematics, computer science, and epidemiology communities, a full theoretical understanding is still missing and currently limited to the cases where the time-scale separation holds between spreading and network dynamics or to specific temporal network models. We consider a Markov chain description of the susceptible-infectious-susceptible process on an arbitrary temporal network. By adopting a multilayer perspective, we develop a general analytical derivation of the epidemic threshold in terms of the spectral radius of a matrix that encodes both network structure and disease dynamics. The accuracy of the approach is confirmed on a set of temporal models and empirical networks and against numerical results. In addition, we explore how the threshold changes when varying the overall time of observation of the temporal network, so as to provide insights on the optimal time window for data collection of empirical temporal networked systems. Our framework is of both fundamental and practical interest, as it offers novel understanding of the interplay between temporal networks and spreading dynamics.Received 18 August 2014DOI:https://doi.org/10.1103/PhysRevX.5.021005This article is available under the terms of the Creative Commons Attribution 3.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.Published by the American Physical Society
0

Seasonal transmission potential and activity peaks of the new influenza A(H1N1): a Monte Carlo likelihood analysis based on human mobility

Duygu Balcan et al.Sep 10, 2009
Abstract Background On 11 June the World Health Organization officially raised the phase of pandemic alert (with regard to the new H1N1 influenza strain) to level 6. As of 19 July, 137,232 cases of the H1N1 influenza strain have been officially confirmed in 142 different countries, and the pandemic unfolding in the Southern hemisphere is now under scrutiny to gain insights about the next winter wave in the Northern hemisphere. A major challenge is pre-empted by the need to estimate the transmission potential of the virus and to assess its dependence on seasonality aspects in order to be able to use numerical models capable of projecting the spatiotemporal pattern of the pandemic. Methods In the present work, we use a global structured metapopulation model integrating mobility and transportation data worldwide. The model considers data on 3,362 subpopulations in 220 different countries and individual mobility across them. The model generates stochastic realizations of the epidemic evolution worldwide considering 6 billion individuals, from which we can gather information such as prevalence, morbidity, number of secondary cases and number and date of imported cases for each subpopulation, all with a time resolution of 1 day. In order to estimate the transmission potential and the relevant model parameters we used the data on the chronology of the 2009 novel influenza A(H1N1). The method is based on the maximum likelihood analysis of the arrival time distribution generated by the model in 12 countries seeded by Mexico by using 1 million computationally simulated epidemics. An extended chronology including 93 countries worldwide seeded before 18 June was used to ascertain the seasonality effects. Results We found the best estimate R 0 = 1.75 (95% confidence interval (CI) 1.64 to 1.88) for the basic reproductive number. Correlation analysis allows the selection of the most probable seasonal behavior based on the observed pattern, leading to the identification of plausible scenarios for the future unfolding of the pandemic and the estimate of pandemic activity peaks in the different hemispheres. We provide estimates for the number of hospitalizations and the attack rate for the next wave as well as an extensive sensitivity analysis on the disease parameter values. We also studied the effect of systematic therapeutic use of antiviral drugs on the epidemic timeline. Conclusion The analysis shows the potential for an early epidemic peak occurring in October/November in the Northern hemisphere, likely before large-scale vaccination campaigns could be carried out. The baseline results refer to a worst-case scenario in which additional mitigation policies are not considered. We suggest that the planning of additional mitigation policies such as systematic antiviral treatments might be the key to delay the activity peak in order to restore the effectiveness of the vaccination programs.
40

Accommodating individual travel history, global mobility, and unsampled diversity in phylogeography: a SARS-CoV-2 case study

Philippe Lemey et al.Jun 23, 2020
Spatiotemporal bias in genome sequence sampling can severely confound phylogeographic inference based on discrete trait ancestral reconstruction. This has impeded our ability to accurately track the emergence and spread of SARS-CoV-2, which is the virus responsible for the COVID-19 pandemic. Despite the availability of staggering numbers of genomes on a global scale, evolutionary reconstructions of SARS-CoV-2 are hindered by the slow accumulation of sequence divergence over its relatively short transmission history. When confronted with these issues, incorporating additional contextual data may critically inform phylodynamic reconstructions. Here, we present a new approach to integrate individual travel history data in Bayesian phylogeographic inference and apply it to the early spread of SARS-CoV-2, while also including global air transportation data. We demonstrate that including travel history data for each SARS-CoV-2 genome yields more realistic reconstructions of virus spread, particularly when travelers from undersampled locations are included to mitigate sampling bias. We further explore the impact of sampling bias by incorporating unsampled sequences from undersampled locations in the analyses. Our reconstructions reinforce specific transmission hypotheses suggested by the inclusion of travel history data, but also suggest alternative routes of virus migration that are plausible within the epidemiological context but are not apparent with current sampling efforts. Although further research is needed to fully examine the performance of our new data integration approaches and to further improve them, they represent multiple new avenues for directly addressing the colossal issue of sample bias in phylogeographic inference.
40
Citation9
0
Save
0

The impact of regular school closure on seasonal influenza epidemics: a data-driven spatial transmission model for Belgium

Giancarlo Luca et al.Dec 7, 2017
School closure is often considered as an option to mitigate influenza epidemics because of its potential to reduce transmission in children and then in the community. The policy is still however highly debated because of controversial evidence. Moreover, the specific mechanisms leading to mitigation are not clearly identified. We introduced a stochastic spatial age-specific metapopulation model to assess the role of holiday-associated behavioral changes and how they affect seasonal influenza dynamics. The model is applied to Belgium, parameterized with country-specific data on social mixing and travel, and calibrated to the 2008/2009 influenza season. It includes behavioral changes occurring during weekend vs. weekday, and holiday vs. school-term. Several experimental scenarios are explored to identify the relevant social and behavioral mechanisms. Stochastic numerical simulations show that holidays considerably delay the peak of the season and mitigate its impact. Changes in mixing patterns are responsible for the observed effects, whereas changes in travel behavior do not alter the epidemic. Weekends are important in slowing down the season by periodically dampening transmission. Christmas holidays have the largest impact on the epidemic, however later school breaks may help in reducing the epidemic size, stressing the importance of considering the full calendar. An extension of the Christmas holiday of one week may further mitigate the epidemic. Changes in the way individuals establish contacts during holidays are the key ingredient explaining the mitigating effect of regular school closure. Our findings highlight the need to quantify these changes in different demographic and epidemic contexts in order to provide accurate and reliable evaluations of closure effectiveness. They also suggest strategic policies in the distribution of holiday periods to minimize the epidemic impact.
1

A comparative analysis of Chikungunya and Zika transmission

Julien Riou et al.Oct 4, 2016
The recent global dissemination of Chikungunya and Zika has fostered public health concern worldwide. To better understand the drivers of transmission of these two arboviral diseases, we propose a joint analysis of Chikungunya and Zika epidemics in the same territories, taking into account the common epidemiological features of the epidemics: transmitted by the same vector, in the same environments, and observed by the same surveillance systems. We analyse eighteen outbreaks in French Polynesia and the French West Indies using a hierarchical time-dependent SIR model accounting for the effect of virus, location and weather on transmission, and based on a disease specific serial interval. We show that Chikungunya and Zika have similar transmission potential in the same territories (transmissibility ratio between Zika and Chikungunya of 1.04 [95% credible interval: 0.97; 1.13]), but that detection and reporting rates were different (around 19% for Zika and 40% for Chikungunya). Temperature variations between 22°C and 29°C did not alter transmission, but increased precipitation showed a dual effect, first reducing transmission after a two-week delay, then increasing it around five weeks later. The present study provides valuable information for risk assessment and introduces a modelling framework for the comparative analysis of arboviral infections that can be extended to other viruses and territories.
0

Shifting patterns of seasonal influenza epidemics

Pietro Coletti et al.Feb 19, 2018
Seasonal waves of influenza display a complex spatiotemporal pattern resulting from the interplay of biological, socio-demographic, and environmental factors. At country level many studies characterized the robust properties of annual epidemics, depicting a typical season. Here we analyzed season-by-season variability, introducing a clustering approach to assess the deviations from typical spreading patterns. The classification is performed on the similarity of temporal configurations of onset and peak times of regional epidemics, based on influenza-like-illness time-series in France from 1984 to 2014. We observed a larger variability in the onset compared to the peak. Two relevant classes of clusters emerge: groups of seasons sharing similar recurrent spreading patterns (clustered seasons) and single seasons displaying unique patterns (monoids). Recurrent patterns exhibit a more pronounced spatial signature than unique patterns. We assessed how seasons shift between these classes from onset to peak depending on epidemiological, environmental, and socio-demographic variables. We found that the spatial dynamics of influenza and its association with commuting, previously observed as a general property of French influenza epidemics, applies only to seasons exhibiting recurrent patterns. The proposed methodology is successful in providing new insights on influenza spread and can be applied to incidence time-series of different countries and different diseases.
0
0
Save
0

Improving early epidemiological assessment of emerging Aedes-transmitted epidemics using historical data

Julien Riou et al.Apr 16, 2018
Model-based epidemiological assessment is useful to support decision-making at the beginning of an emerging Aedes-transmitted outbreak. However, early forecasts are generally unreliable as little information is available in the first few incidence data points. Here, we show how past Aedes-transmitted epidemics help improve these predictions. The approach was applied to the 2015-2017 Zika virus epidemics in three islands of the French West Indies, with historical data including other Aedes-transmitted diseases (Chikungunya and Zika) in the same and other locations. Hierarchical models were used to build informative a priori distributions on the reproduction ratio and the reporting rates. The accuracy and sharpness of forecasts improved substantially when these a priori distributions were used in models for prediction. For example, early forecasts of final epidemic size obtained without historical information were 3.3 times too high on average (range: 0.2 to 5.8) with respect to the eventual size, but were far closer (1.1 times the real value on average, range: 0.4 to 1.5) using information on past CHIKV epidemics in the same places. Likewise, the 97.5% upper bound for maximal incidence was 15.3 times (range: 2.0 to 63.1) the actual peak incidence, and became much sharper at 2.4 times (range: 1.3 to 3.9) the actual peak incidence with informative a priori distributions. Improvements were more limited for the date of peak incidence and the total duration of the epidemic. The framework can adapt to all forecasting models at the early stages of emerging Aedes-transmitted outbreaks.
Load More