EY
Euisik Yoon
Author with expertise in Optogenetics in Neuroscience and Biophysics Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
12
(50% Open Access)
Cited by:
15
h-index:
32
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
15

Ultra-flexible and Stretchable Intrafascicular Peripheral Nerve Recording Device with Axon-dimension, Cuff-less Microneedle Electrode Array

Dongxiao Yan et al.Jan 21, 2022
Abstract Peripheral nerve mapping tools with higher spatial resolution are needed to advance systems neuroscience, and potentially provide a closed-loop biomarker in neuromodulation applications. Two critical challenges of microscale neural interfaces are (i) how to apply them to small peripheral nerves, and (ii) how to minimize chronic reactivity. We developed a flexible mi croneedle n erve a rray (MINA), which is the first high-density penetrating electrode array made with axon-sized silicon microneedles embedded in low-modulus thin silicone. We present the design, fabrication, acute recording, and chronic reactivity to an implanted MINA. Distinctive units were identified in the rat peroneal nerve. We also demonstrate a long-term, cuff-free, and suture-free fixation manner using rose bengal as a light-activated adhesive for two timepoints. The tissue response at 1-week included a sham (N=5) and MINA-implanted (N=5) group, and the response at 6-week also included a sham (N=3) and MINA-implanted (N=4) group. These conditions were quantified in the left vagus nerve of rats using histomorphometry. Micro-CT was added to visualize and quantify tissue encapsulation around the implant. MINA demonstrated a reduction in encapsulation thickness over previously quantified interfascicular methods. Future challenges include techniques for precise insertion of the microneedle electrodes and demonstrating long-term recording.
0

Ultra-compliant carbon nanotube stretchable direct bladder interface

Dongxiao Yan et al.Mar 18, 2019
The bladder, stomach, intestines, heart, and lungs all move dynamically to achieve their purpose. A long-term implantable device that can attach onto an organ, sense its movement, and deliver current to modify the organ function would be useful in many therapeutic applications. The bladder, for example, is a smooth muscle organ that can suffer from incomplete contractions that result in urinary retention with patients requiring using catheterization. Those affected may benefit from a combination of strain sensor and electrical stimulator to better control bladder emptying. We describe the materials and design of such a device made from thin layer carbon nanotube (CNT) and Ecoflex 00-50 and demonstrate its function with in vivo feline bladders. During bench-top characterization, the resistive and capacitive sensors exhibited reliable output throughout 5,000 stretching cycles under physiology condition. In vivo measurement with piezoresistive device showed a high correlation between sensor resistance and volume. Stimulation driven from Pt-PDMS composite electrodes successfully induced bladder contraction. We present method for reliable connection and packaging of medical grade wire to the CNT device. This work is an important step toward the translation of low-durometer elastomers, stretchable CNT percolation and Pt-PDMS composite, which are ideal for large strain bioelectric applications to sense or modulate dynamic organ states.
0

Heterogeneous transcriptome response to DNA damage at single cell resolution.

Sung Park et al.Aug 15, 2019
Cancer cells often heterogeneously respond to genotoxic chemotherapy, leading to fractional killing and chemoresistance, which remain as the major obstacles in cancer treatment. It is widely believed that DNA damage induces a uniform response in regulating transcription and that cell fate is passively determined by a threshold mechanism evaluating the level of transcriptional responses. On the contrary to this assumption, here we show that a surprisingly high level of heterogeneity exists in individual cell transcriptome responses to DNA damage, and that these transcriptome variations dictate the cell fate after DNA damage. Many DNA damage response genes, including tumor suppressor p53 targets, were exclusively expressed in only a subset of cells having specific cell fate, producing unique stress responses tailored for the fate that the cells are committed to. For instance, CDKN1A, the best known p53 target inhibiting cell cycle, was specifically expressed in a subset of cells undergoing cell cycle checkpoint, while other pro-apoptotic p53 targets were expressed only in cells undergoing apoptosis. A small group of cells exhibited neither checkpoint nor apoptotic responses, but produced a unique transcriptional program that conferred strong chemoresistance to the cells. The heterogeneous transcriptome response to DNA damage was also observed at the protein level in flow cytometry. Our results demonstrate that cell fate heterogeneity after DNA damage is mediated by distinct transcriptional programs generating fate-specific gene expression landscapes. This finding provides an important insight into understanding heterogeneous chemotherapy responses of cancer cells.
1

Simultaneous Electrophysiology and Optogenetic Perturbation of the Same Neurons in Chronically Implanted Animals using μLED Silicon Probes

Nathaniel Kinsky et al.Feb 6, 2023
Optogenetics are a powerful tool for testing how a neural circuit influences neural activity, cognition, and behavior. Accordingly, the number of studies employing optogenetic perturbation has grown exponentially over the last decade. However, recent studies have highlighted that the impact of optogenetic stimulation/silencing can vary depending on the construct used, the local microcircuit connectivity, extent/power of illumination, and neuron types perturbed. Despite these caveats, the majority of studies employ optogenetics without simultaneously recording neural activity in the circuit that is being perturbed. This dearth of simultaneously recorded neural data is due in part to technical difficulties in combining optogenetics and extracellular electrophysiology. The recent introduction of μLED silicon probes, which feature independently controllable miniature LEDs embedded at several levels of each of multiple shanks of silicon probes, provides a tractable method for temporally and spatially precise interrogation of neural circuits. Here, we provide a protocol addressing how to perform chronic recordings using μLED probes. This protocol provides a schematic for performing causal and reproducible interrogations of neural circuits and addresses all phases of the recording process: introduction of optogenetic construct, implantation of the μLED probe, performing simultaneous optogenetics and electrophysiology
0

Single-cell analysis of progenitor cell dynamics and lineage specification of the human fetal kidney

Rajasree Menon et al.Feb 1, 2018
The mammalian kidney develops through repetitive and reciprocal interactions between the ureteric bud and the metanephric mesenchyme to give rise to the entire collecting system and the nephrons, respectively. Most of our knowledge of the developmental regulators driving this process has been gained from the study of gene expression and functional genetics in mice and other animal models. In order to shed light on human kidney development, we have used single-cell transcriptomics to characterize gene expression in different cell population, and to study individual cell dynamics and lineage trajectories during development. Single cell transcriptome analyses of 3,865 cells identified 17 clusters of specific cell types as defined by their gene expression profile, including markers of ureteric bud tip- and metanephric mesenchyme-specific progenitors, as well as their intermediate and differentiated lineages including the mature collecting ducts, the renal vesicle and comma- and s-shaped bodies, immature and mature podocytes, proximal tubules, loops of Henle and distal tubules. Other lineages identified include mesangium and cortical and medullary interstitium, endothelial and immune cells as well as hematopoietic cells. Novel markers for these cell types were revealed in the analysis as well as components of key signaling pathways driving renal development in animal models. Altogether, we provide a comprehensive and dynamic gene expression array of the human developing kidney at the single-cell level.
Load More