SL
Sook‐Lei Liew
Author with expertise in Epidemiology and Management of Stroke
University of Southern California, University of British Columbia, Stanford University
+ 7 more
Achievements
This user has not unlocked any achievements yet.
Key Stats
Upvotes received:
0
Publications:
13
(38% Open Access)
Cited by:
5
h-index:
25
/
i10-index:
46
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Determinants of Real-Time fMRI Neurofeedback Performance and Improvement – a Machine Learning Mega-Analysis

Amelie Haugg et al.May 31, 2024
+45
A
F
A
Abstract Real-time fMRI neurofeedback is an increasingly popular neuroimaging technique that allows an individual to gain control over his/her own brain signals, which can lead to improvements in behavior in healthy participants as well as to improvements of clinical symptoms in patient populations. However, a considerably large ratio of participants undergoing neurofeedback training do not learn to control their own brain signals and, consequently, do not benefit from neurofeedback interventions, which limits clinical efficacy of neurofeedback interventions. As neurofeedback success varies between studies and participants, it is important to identify factors that might influence neurofeedback success. Here, for the first time, we employed a big data machine learning approach to investigate the influence of 20 different design-specific (e.g. activity vs. connectivity feedback), region of interest-specific (e.g. cortical vs. subcortical) and subject-specific factors (e.g. age) on neurofeedback performance and improvement in 608 participants from 28 independent experiments. With a classification accuracy of 60% (considerably different from chance level), we identified two factors that significantly influenced neurofeedback performance: Both the inclusion of a pre-training no-feedback run before neurofeedback training and neurofeedback training of patients as compared to healthy participants were associated with better neurofeedback performance. The positive effect of pre-training no-feedback runs on neurofeedback performance might be due to the familiarization of participants with the neurofeedback setup and the mental imagery task before neurofeedback training runs. Better performance of patients as compared to healthy participants might be driven by higher motivation of patients, higher ranges for the regulation of dysfunctional brain signals, or a more extensive piloting of clinical experimental paradigms. Due to the large heterogeneity of our dataset, these findings likely generalize across neurofeedback studies, thus providing guidance for designing more efficient neurofeedback studies specifically for improving clinical neurofeedback-based interventions. To facilitate the development of data-driven recommendations for specific design details and subpopulations the field would benefit from stronger engagement in Open Science and data sharing.
0
Citation4
0
Save
6

Chronic stroke sensorimotor impairment is related to smaller hippocampal volumes: An ENIGMA analysis

Artemis Zavaliangos‐Petropulu et al.Oct 24, 2023
+57
M
B
A
Abstract Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is involved in sensorimotor behavior but has not been widely studied within the context of post-stroke upper limb sensorimotor impairment. The hippocampus is vulnerable to secondary degeneration after stroke, and damage to this region could further weaken sensorimotor circuits, leading to greater chronic sensorimotor impairment. The purpose of this study was to investigate the cross-sectional association between non-lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke. We hypothesized that smaller ipsilesional hippocampal volumes would be associated with worse upper-limb sensorimotor impairment. Cross-sectional T1-weighted brain MRIs were pooled from 357 participants at the chronic stage after stroke (>180 days post-stroke) compiled from 18 research cohorts worldwide in the ENIGMA Stroke Recovery Working Group (age: median = 61 years, interquartile range = 18, range = 23-93; 135 women and 222 men). Sensorimotor impairment was estimated from the Fugl-Meyer Assessment of Upper Extremity scores. Robust mixed-effects linear models were used to test associations between post-stroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, p - value < 0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. We also performed an exploratory analysis to test whether sex differences influence the relationship between sensorimotor impairment and hippocampal volume. Upper limb sensorimotor impairment was positively associated with ipsilesional ( p = 0.005; d = 0.33) but not contralesional ( p = 0.96; d = 0.01) hippocampal volume, such that impairment was worse for participants with smaller ipsilesional hippocampal volume. This association remained significant independent of lesion volume or other covariates ( p = 0.001; d = 0.36). Evidence indicates an interaction between sensorimotor impairment and sex for both ipsilesional ( p = 0.008; d = −0.29) and contralesional ( p = 0.006; d = −0.30) hippocampal volumes, whereby women showed progressively worsening sensorimotor impairment with smaller hippocampal volumes compared to men. The present study has identified a novel association between chronic post-stroke sensorimotor impairment and ipsilesional, but not contralesional, hippocampal volume. This finding was not due to lesion size and may be stronger in women. We also provide supporting evidence that smaller hippocampal volume post-stroke is likely a consequence of ipsilesional damage, which could provide a link between vascular disease and other disorders, such as dementia.
0

Testing a convolutional neural network-based hippocampal segmentation method in a stroke population

Artemis Zavaliangos‐Petropulu et al.May 7, 2020
+5
E
M
A
As stroke mortality rates decrease, there has been a surge of effort to study post- stroke dementia (PSD) to improve long-term quality of life for stroke survivors. Hippocampal volume may be an important neuroimaging biomarker in post-stroke dementia, as it has been associated with many other forms of dementia. However, studying hippocampal volume using MRI requires hippocampal segmentation. Advances in automated segmentation methods have allowed for studying the hippocampus on a large scale, which is important for robust results in the heterogeneous stroke population. However, most of these automated methods use a single atlas-based approach and may fail in the presence of severe structural abnormalities common in stroke. Hippodeep, a new convolutional neural network-based hippocampal segmentation method, does not rely solely on a single atlas-based approach and thus may be better suited for stroke populations. Here, we compared the accuracy and segmentation output success among Hippodeep and two well-accepted hippocampal segmentation methods on stroke MRIs (FreeSurfer 6.0 whole hippocampus and FreeSurfer 6.0 sum of hippocampal subfields). Hippodeep performed best in terms of output failure rates and accuracy, although the FreeSurfer 'sum of subfields' method performed best on volumetric intraclass correlations. Overall, this study suggests that both Hippodeep and FreeSurfer may be useful for hippocampal segmentation in stroke rehabilitation research, but Hippodeep may be more robust to stroke lesion anatomy.
0

A comparison of automated lesion segmentation approaches for chronic stroke T1-weighted MRI data

Kaori Ito et al.May 7, 2020
S
H
K
Accurate stroke lesion segmentation is a critical step in the neuroimaging processing pipeline to assess the relationship between post-stroke brain structure, function, and behavior. While many multimodal segmentation algorithms have been developed for acute stroke neuroimaging, few are effective with only a single T1-weighted (T1w) anatomical MRI. This is a critical gap because most stroke rehabilitation research relies on a single T1w MRI for defining the lesion. Although several attempts to automate the segmentation of chronic lesions on single-channel T1w MRI have been made, these approaches have not been systematically evaluated on a large dataset. Here, we performed an exhaustive review of the literature and identified one semi- and three fully automated approaches for segmentation of chronic stroke lesions using T1w MRI within the last ten years: Clusterize, Automated Lesion Identification, Gaussian naïve Bayes lesion detection, and LINDA. We evaluated each method on a large T1w stroke dataset (N=181) using visual and quantitative methods. LINDA was the most computationally expensive approach, but performed best across the three main evaluation metrics (median values: Dice Coefficient=0.50, Hausdorffs Distance=36.34 mm, and Average Symmetric Surface Distance = 4.97 mm), whereas the Gaussian Bayes method had the highest recall/least false positives (median=0.80). Segmentation accuracy in all automated methods were influenced by size (small: worst) and stroke territory (brainstem, cerebellum: worst) of the lesion. To facilitate reproducible science, we have made our analysis files publicly available online at https://github.com/npnl/elsa. We hope these findings are informative to future development of T1w lesion segmentation algorithms.
0

Embodiment is related to better performance on an immersive brain computer interface in head-mounted virtual reality: A pilot study

Julia Juliano et al.May 7, 2020
+6
A
R
J
Brain computer interfaces (BCI) can be used to provide individuals with neurofeedback of their own brain activity and train them to learn how to control their brain activity. Neurofeedback-based BCIs used for motor rehabilitation aim to ‘close the loop’ between attempted motor commands and sensory feedback by providing supplemental sensory information when individuals successfully establish specific brain patterns. Existing neurofeedback-based BCIs have used a variety of displays to provide feedback, ranging from devices that provide a more immersive and compelling experience (e.g., head-mounted virtual reality (HMD-VR) or CAVE systems) to devices that are considered less immersive (e.g., computer screens). However, it is not clear whether more immersive systems (i.e., HMD-VR) improve neurofeedback performance compared to computer screens, and whether there are individual performance differences in HMD-VR versus screen-based neurofeedback. In this pilot experiment, we compared neurofeedback performance in HMD-VR versus on a computer screen in twelve healthy individuals. We also examined whether individual differences in presence or embodiment correlated with neurofeedback performance in either environment. Participants were asked to control a virtual right arm by imagining right hand movements. Real-time brain activity indicating motor imagery, which was measured via electroencephalography (EEG) as desynchronized sensorimotor rhythms (SMR; 8-24 Hz) in the left motor cortex, drove the movement of the virtual arm towards (increased SMR desynchronization) or away from (decreased SMR desynchronization) targets. Participants performed two blocks of 30 trials, one for each condition (Screen, HMD-VR), with the order of conditions counterbalanced across participants. After completing each block, participants were asked questions relating to their sense of presence and embodiment in each environment. We found that, while participants’ performance on the neurofeedback-based BCI task was similar between conditions, the participants’ reported levels of embodiment was significantly different between conditions. Specifically, participants experienced higher levels of embodiment in HMD-VR compared to the computer screen. We further found that reported levels of embodiment positively correlated with neurofeedback performance only in the HMD-VR condition. Overall, these preliminary results suggest that embodiment may improve performance on a neurofeedback-based BCI and that HMD-VR may increase embodiment during a neurofeedback-based BCI task compared to a standard computer screen.
1

Data-driven biomarkers outperform theory-based biomarkers in predicting stroke motor outcomes

Emily Olafson et al.Oct 24, 2023
+29
K
C
E
Chronic motor impairments are a leading cause of disability after stroke. Previous studies have predicted motor outcomes based on the degree of damage to predefined structures in the motor system, such as the corticospinal tract. However, such theory-based approaches may not take full advantage of the information contained in clinical imaging data. The present study uses data-driven approaches to predict chronic motor outcomes after stroke and compares the accuracy of these predictions to previously-identified theory-based biomarkers. Using a cross-validation framework, regression models were trained using lesion masks and motor outcomes data from 789 stroke patients (293 female/496 male) from the ENIGMA Stroke Recovery Working Group (age 64.9±18.0 years; time since stroke 12.2±0.2 months; normalised motor score 0.7±0.5 (range [0,1]). The out-of-sample prediction accuracy of two theory-based biomarkers was assessed: lesion load of the corticospinal tract, and lesion load of multiple descending motor tracts. These theory-based prediction accuracies were compared to the prediction accuracy from three data-driven biomarkers: lesion load of lesion-behaviour maps, lesion load of structural networks associated with lesion-behaviour maps, and measures of regional structural disconnection. In general, data-driven biomarkers had better prediction accuracy - as measured by higher explained variance in chronic motor outcomes - than theory-based biomarkers. Data-driven models of regional structural disconnection performed the best of all models tested (R2 = 0.210, p < 0.001), performing significantly better than predictions using the theory-based biomarkers of lesion load of the corticospinal tract (R2 = 0.132, p< 0.001) and of multiple descending motor tracts (R2 = 0.180, p < 0.001). They also performed slightly, but significantly, better than other data-driven biomarkers including lesion load of lesion-behaviour maps (R2 =0.200, p < 0.001) and lesion load of structural networks associated with lesion-behaviour maps (R2 =0.167, p < 0.001). Ensemble models - combining basic demographic variables like age, sex, and time since stroke - improved prediction accuracy for theory-based and data-driven biomarkers. Finally, combining both theory-based and data-driven biomarkers with demographic variables improved predictions, and the best ensemble model achieved R2 = 0.241, p < 0.001. Overall, these results demonstrate that models that predict chronic motor outcomes using data-driven features, particularly when lesion data is represented in terms of structural disconnection, perform better than models that predict chronic motor outcomes using theory-based features from the motor system. However, combining both theory-based and data-driven models provides the best predictions.
0

Distributed cortical structural properties contribute to motor cortical excitability and inhibition

Eran Dayan et al.May 7, 2020
L
S
V
E
The link between the local structure of the primary motor cortex and motor function has been well documented. However, motor function relies on a network of interconnected brain regions and the link between the structural properties characterizing these distributed brain networks and motor function remains poorly understood. Here, we examined whether distributed patterns of brain structure, extending beyond the primary motor cortex can help classify two forms of motor function: corticospinal excitability and intracortical inhibition. To this effect, we recorded high-resolution structural magnetic resonance imaging scans in 25 healthy volunteers. To measure corticospinal excitability and inhibition in the same volunteers we recorded motor evoked potentials (MEPs) elicited by single-pulse transcranial magnetic stimulation (TMS) and short-interval intracortical inhibition (SICI) in a separate session. Support vector machine (SVM) pattern classification was used to identify distributed multivoxel gray matter areas, which distinguished subjects who had lower and higher MEPs and SICIs. We found that MEP and SICI classification could be predicted based on a widely distributed, largely non-overlapping pattern of voxels in the frontal, parietal, temporal, occipital and cerebellar regions. Thus, structural properties distributed over the brain beyond the primary motor cortex relate to motor function.
0

Differences in high-definition transcranial direct current stimulation over the motor hotspot versus the premotor cortex on motor network excitability

Stéphanie Lefebvre et al.May 7, 2020
+5
A
K
S
The effectiveness of transcranial direct current stimulation (tDCS) placed over the motor hotspot (thought to represent the primary motor cortex (M1)) to modulate motor network excitability is highly variable. The premotor cortex—particularly the dorsal premotor cortex (PMd)—may be a promising alternative target to more effectively modulate motor excitability, as it influences motor control across multiple pathways, one independent of M1 and one with direct, modulating connections to M1. This double-blind, placebo-controlled study aimed to differentially excite motor and premotor regions using high-definition tDCS (HD-tDCS) with concurrent functional magnetic resonance imaging (fMRI). HD-tDCS applied over either the motor hotspot or the premotor cortex demonstrated high inter-individual variability in changes on cortical motor excitability. However, HD-tDCS over the premotor cortex led to a higher number of responders and greater changes in local fMRI-based complexity than HD-tDCS over the motor hotspot. Furthermore, an analysis of individual motor hotspot anatomical locations revealed that, in more than half of the participants, the motor hotspot is not located over anatomical M1 boundaries, despite using a canonical definition of the motor hotspot. This heterogeneity in stimulation site may contribute to the variability of tDCS results. Altogether, these findings provide new considerations to enhance tDCS reliability.
1

Global brain health modulates the impact of lesion damage on post-stroke sensorimotor outcomes

Sook‐Lei Liew et al.Oct 24, 2023
+69
J
N
S
Abstract Sensorimotor performance after stroke is strongly related to focal injury measures such as corticospinal tract lesion load. However, the role of global brain health is less clear. Here, we examined the impact of brain age, a measure of neurobiological aging derived from whole brain structural neuroimaging, on sensorimotor outcomes. We hypothesized that stroke lesion damage would result in older brain age, which would in turn be associated with poorer sensorimotor outcomes. We also expected that brain age would mediate the impact of lesion damage on sensorimotor outcomes and that these relationships would be driven by post-stroke secondary atrophy (e.g., strongest in the ipsilesional hemisphere in chronic stroke). We further hypothesized that structural brain resilience, which we define in the context of stroke as the brain’s ability to maintain its global integrity despite focal lesion damage, would differentiate people with better versus worse outcomes. We analyzed cross-sectional high-resolution brain MRI and outcomes data from 963 people with stroke from 38 cohorts worldwide using robust linear mixed-effects regressions to examine the relationship between sensorimotor behavior, lesion damage, and brain age. We used a mediation analysis to examine whether brain age mediates the impact of lesion damage on stroke outcomes and if associations are driven by ipsilesional measures in chronic (≥180 days) stroke. We assessed the impact of brain resilience on sensorimotor outcome using logistic regression with propensity score matching on lesion damage. Stroke lesion damage was associated with older brain age, which in turn was associated with poorer sensorimotor outcomes. Brain age mediated the impact of corticospinal tract lesion load on sensorimotor outcomes most strongly in the ipsilesional hemisphere in chronic stroke. Greater brain resilience, as indexed by younger brain age, explained why people have better versus worse sensorimotor outcomes when lesion damage was fixed. We present novel evidence that global brain health is associated with superior post-stroke sensorimotor outcomes and modifies the impact of focal damage. This relationship appears to be due to post-stroke secondary degeneration. Brain resilience provides insight into why some people have better outcomes after stroke, despite similar amounts of focal injury. Inclusion of imaging-based assessments of global brain health may improve prediction of post-stroke sensorimotor outcomes compared to focal injury measures alone. This investigation is important because it introduces the potential to apply novel therapeutic interventions to prevent or slow brain aging from other fields (e.g., Alzheimer’s disease) to stroke.
0

A large, open source dataset of stroke anatomical brain images and manual lesion segmentations

Sook‐Lei Liew et al.May 6, 2020
+32
N
J
S
Stroke is the leading cause of adult disability worldwide, with up to two-thirds of individuals experiencing long-term disabilities. Large-scale neuroimaging studies have shown promise in identifying robust biomarkers (e.g., measures of brain structure) of long-term stroke recovery following rehabilitation. However, analyzing large rehabilitation-related datasets is problematic due to barriers in accurate stroke lesion segmentation. Manually-traced lesions are currently the gold standard for lesion segmentation on T1-weighted MRIs, but are labor intensive and require anatomical expertise. While algorithms have been developed to automate this process, the results often lack accuracy. Newer algorithms that employ machine-learning techniques are promising, yet these require large training datasets to optimize performance. Here we present ATLAS (Anatomical Tracings of Lesions After Stroke), an open-source dataset of 304 T1-weighted MRIs with manually segmented lesions and metadata. This large, diverse dataset can be used to train and test lesion segmentation algorithms and provides a standardized dataset for comparing the performance of different segmentation methods. We hope ATLAS release 1.1 will be a useful resource to assess and improve the accuracy of current lesion segmentation methods.
Load More