GF
Guillaume Flandin
Author with expertise in Analysis of Brain Functional Connectivity Networks
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
13
(69% Open Access)
Cited by:
3,905
h-index:
37
/
i10-index:
54
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Topological FDR for neuroimaging

Justin Chumbley et al.Nov 25, 2009
In this technical note, we describe and validate a topological false discovery rate (FDR) procedure for statistical parametric mapping. This procedure is designed to deal with signal that is continuous and has, in principle, unbounded spatial support. We therefore infer on topological features of the signal, such as the existence of local maxima or peaks above some threshold. Using results from random field theory, we assign a p-value to each maximum in an SPM and identify an adaptive threshold that controls false discovery rate, using the Benjamini and Hochberg (BH) procedure (1995). This provides a natural complement to conventional family wise error (FWE) control on local maxima. We use simulations to contrast these procedures; both in terms of their relative number of discoveries and their spatial accuracy (via the distribution of the Euclidian distance between true and discovered activations). We also assessed two other procedures: cluster-wise and voxel-wise FDR procedures. Our results suggest that (a) FDR control of maxima or peaks is more sensitive than FWE control of peaks with minimal cost in terms of false-positives, (b) voxel-wise FDR is substantially less accurate than topological FWE or FDR control. Finally, we present an illustrative application using an fMRI study of visual attention.
1

BIDS apps: Improving ease of use, accessibility, and reproducibility of neuroimaging data analysis methods

Krzysztof Gorgolewski et al.Mar 9, 2017
The rate of progress in human neurosciences is limited by the inability to easily apply a wide range of analysis methods to the plethora of different datasets acquired in labs around the world. In this work, we introduce a framework for creating, testing, versioning and archiving portable applications for analyzing neuroimaging data organized and described in compliance with the Brain Imaging Data Structure (BIDS). The portability of these applications (BIDS Apps) is achieved by using container technologies that encapsulate all binary and other dependencies in one convenient package. BIDS Apps run on all three major operating systems with no need for complex setup and configuration and thanks to the comprehensiveness of the BIDS standard they require little manual user input. Previous containerized data processing solutions were limited to single user environments and not compatible with most multi-tenant High Performance Computing systems. BIDS Apps overcome this limitation by taking advantage of the Singularity container technology. As a proof of concept, this work is accompanied by 22 ready to use BIDS Apps, packaging a diverse set of commonly used neuroimaging algorithms.
0

Resting state functional MRI in Parkinson’s disease: the impact of deep brain stimulation on ‘effective’ connectivity

Joshua Kahan et al.Feb 24, 2014
Depleted of dopamine, the dynamics of the parkinsonian brain impact on both 'action' and 'resting' motor behaviour. Deep brain stimulation has become an established means of managing these symptoms, although its mechanisms of action remain unclear. Non-invasive characterizations of induced brain responses, and the effective connectivity underlying them, generally appeals to dynamic causal modelling of neuroimaging data. When the brain is at rest, however, this sort of characterization has been limited to correlations (functional connectivity). In this work, we model the 'effective' connectivity underlying low frequency blood oxygen level-dependent fluctuations in the resting Parkinsonian motor network—disclosing the distributed effects of deep brain stimulation on cortico-subcortical connections. Specifically, we show that subthalamic nucleus deep brain stimulation modulates all the major components of the motor cortico-striato-thalamo-cortical loop, including the cortico-striatal, thalamo-cortical, direct and indirect basal ganglia pathways, and the hyperdirect subthalamic nucleus projections. The strength of effective subthalamic nucleus afferents and efferents were reduced by stimulation, whereas cortico-striatal, thalamo-cortical and direct pathways were strengthened. Remarkably, regression analysis revealed that the hyperdirect, direct, and basal ganglia afferents to the subthalamic nucleus predicted clinical status and therapeutic response to deep brain stimulation; however, suppression of the sensitivity of the subthalamic nucleus to its hyperdirect afferents by deep brain stimulation may subvert the clinical efficacy of deep brain stimulation. Our findings highlight the distributed effects of stimulation on the resting motor network and provide a framework for analysing effective connectivity in resting state functional MRI with strong a priori hypotheses.
Load More