GS
Greg Slodkowicz
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
6
(50% Open Access)
Cited by:
823
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
27

TRIM7 restricts Coxsackievirus and norovirus infection by detecting the C-terminal glutamine generated by 3C protease processing

Jakub Lupták et al.Jul 5, 2022
Abstract TRIM7 catalyses the ubiquitination of multiple substrates with unrelated biological functions. This cross-reactivity is at odds with the specificity usually displayed by enzymes, including ubiquitin ligases. Here we show that TRIM7’s extreme substrate promiscuity is due to a highly unusual binding mechanism, in which the PRYSPRY domain captures any ligand with a C-terminal helix that terminates in a hydrophobic residue followed by a glutamine. Many of the non-structural proteins found in RNA viruses contain C-terminal glutamines as a result of polyprotein cleavage by 3C protease. This viral processing strategy generates novel substrates for TRIM7 and explains its ability to inhibit Coxsackie virus and norovirus replication. In addition to viral proteins, cellular proteins such as glycogenin have evolved C-termini that make them a TRIM7 substrate. The ‘helix-ΦQ’ degron motif recognised by TRIM7 is reminiscent of the N-end degron system and is found in ∼ 1% of cellular proteins. These features, together with TRIM7’s restricted tissue expression and lack of immune regulation suggest that viral restriction may not be its physiological function.
27
Citation2
0
Save
0

Integrated evolutionary and structural analysis reveals xenobiotics and pathogens as the major drivers of mammalian adaptation

Greg Slodkowicz et al.Sep 9, 2019
Understanding the molecular basis of adaptation to the environment is a central question in evolutionary biology, yet linking detected signatures of positive selection to molecular mechanisms remains challenging. Here we demonstrate that combining sequence-based phylogenetic methods with structural information assists in making such mechanistic interpretations on a genomic scale. Our integrative analysis shows that positively selected sites tend to co-localise on protein structures and that positively selected clusters are found in functionally important regions of proteins, indicating that positive selection can contravene the well-known principle of evolutionary conservation of functionally important regions. This unexpected finding, along with our discovery that positive selection acts on structural clusters, opens new strategies for the development of better models of protein evolution. Remarkably, proteins where we detect the strongest evidence of clustering belong to just two functional groups: components of immune response and metabolic enzymes. This gives a coherent picture of immune response and xenobiotic metabolism as the drivers of adaptive evolution of mammals.
0

PASP - a whole-transcriptome poly(A) tail length determination assay for the Illumina platform

Botond Sipos et al.Jun 21, 2016
The poly(A) tail, co-transcriptionally added to most eukaryotic RNAs, plays an important role in post-transcriptional regulation through modulating mRNA stability and translational efficiency. The length of the poly(A) tail is dynamic, decreasing or increasing in response to various stimuli through the action of enzymatic complexes, and changes in tail length are exploited in regulatory pathways implicated in various biological processes. To date, assessment of poly(A) tail length has mostly relied on protocols targeting only a few transcripts. We present PASP ('poly(A) tail sequencing protocol'), a whole-transcriptome approach to measure tail lengths - including a computational pipeline implementing all necessary analyses. PASP uses direct Illumina sequencing of cDNA fragments obtained through G-tailing of poly(A)-selected mRNA followed by fragmentation and reverse transcription. Analysis of reads corresponding to spike-in poly(A) tracts of known length indicated that mean tail lengths can be confidently measured, given sufficient coverage. We further explored the utility of our approach by comparing tail lengths estimated from wild type and Δccr4-1/pan2 mutant yeasts. The yeast whole-transcriptome tail length distributions showed high consistency between biological replicates, and the expected upward shift in tail lengths in the mutant samples was detected. This suggests that PASP is suitable for the assessment of global polyadenylation status in yeast. The correlation of per-transcript mean tail lengths between biological and technical replicates was low (higher between mutant samples). Both, however, reached high values after filtering for transcripts with greater coverage. We also compare our results with those of other methods. We identify a number of improvements that could be used in future PASP experiments and, based on our results, believe that direct sequencing of poly(A) tails can become the method of choice for studying polyadenylation using the Illumina platform.