RN
Robbin Nameki
Author with expertise in RNA Methylation and Modification in Gene Expression
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
9
h-index:
6
/
i10-index:
5
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

chromMAGMA: regulatory element-centric interrogation of risk variants

Robbin Nameki et al.Jan 23, 2022
ABSTRACT Genome-wide association studies (GWASs) have identified thousands of genetic variants associated with common polygenic traits. The candidate causal risk variants reside almost exclusively in noncoding regions of the genome and the underlying mechanisms remain elusive for most. Innovative approaches are necessary to understand their biological function. Multimarker analysis of genomic annotation (MAGMA) is a widely used program that nominates candidate risk genes by mapping single-nucleotide polymorphism (SNP) summary statistics from genome-wide association studies to gene bodies. We augmented MAGMA into chromatin-MAGMA (chromMAGMA), a novel method to nominate candidate risk genes based on the presence of risk variants within noncoding regulatory elements (REs). We applied chromMAGMA to a genetic susceptibility dataset for epithelial ovarian cancer (EOC), a rare gynecologic malignancy characterized by high mortality. Disease-specific RE landscapes were defined using H3K27ac chromatin immunoprecipitation-sequence data. This identified 155 unique candidate EOC risk genes across five EOC histotypes; 83% (105/127) of high-grade serous ovarian cancer risk genes had not previously been implicated in this EOC histotype. Risk genes nominated by chromMAGMA converged on mRNA splicing and transcriptional dysregulation pathways. chromMAGMA is a pipeline that nominates candidate risk genes through a gene regulation-focused approach and helps interpret the biological mechanism of noncoding risk variants in complex diseases.
1
Citation1
0
Save
0

Predicting master transcription factors from pan-cancer expression data

Jessica Reddy et al.Nov 12, 2019
The function of critical developmental regulators can be subverted by cancer cells to control expression of oncogenic transcriptional programs. These "master transcription factors" (MTFs) are often essential for cancer cell survival and represent vulnerabilities that can be exploited therapeutically. The current approaches to identify candidate MTFs examine super-enhancer associated transcription factor-encoding genes with high connectivity in network models. This relies on chromatin immunoprecipitation-sequencing (ChIP-seq) data, which is technically challenging to obtain from primary tumors, and is currently unavailable for many cancer types and clinically relevant subtypes. In contrast, gene expression data are more widely available, especially for rare tumors and subtypes where MTFs have yet to be discovered. We have developed a predictive algorithm called CaCTS (Cancer Core Transcription factor Specificity) to identify candidate MTFs using pan-cancer RNA-sequencing data from The Cancer Genome Atlas. The algorithm identified 273 candidate MTFs across 34 tumor types and recovered known tumor MTFs. We also made novel predictions, including for cancer types and subtypes for which MTFs have not yet been characterized. Clustering based on MTF predictions reproduced anatomic groupings of tumors that share 1-2 lineage-specific candidates, but also dictated functional groupings, such as a squamous group that comprised five tumor subtypes sharing 3 common MTFs. PAX8, SOX17, and MECOM were candidate factors in high-grade serous ovarian cancer (HGSOC), an aggressive tumor type where the core regulatory circuit is currently uncharacterized. PAX8, SOX17, and MECOM are required for cell viability and lie proximal to super-enhancers in HGSOC cells. ChIP-seq revealed that these factors co-occupy HGSOC regulatory elements globally and co-bind at critical gene loci including MUC16 (CA-125). Addiction to these factors was confirmed in studies using THZ1 to inhibit transcription in HGSOC cells, suggesting early down-regulation of these genes may be responsible for cytotoxic effects of THZ1 on HGSOC models. Identification of MTFs across 34 tumor types and 140 subtypes, especially for those with limited understanding of transcriptional drivers paves the way to therapeutic targeting of MTFs in a broad spectrum of cancers.
15

Single-cell Transcriptomics Identifies Gene Expression Networks Driving Differentiation and Tumorigenesis in the Human Fallopian Tube

Huy Dinh et al.May 30, 2020
Summary The human fallopian tube harbors the cell-of-origin for the majority of high-grade serous ‘ovarian’ cancers (HGSCs), but its cellular composition, particularly the epithelial component, is poorly characterized. We performed single-cell transcriptomic profiling in 12 primary fallopian specimens from 8 patients, analyzing around 53,000 individual cells to map the major immune, fibroblastic and epithelial cell types present in this organ. We identified 10 epithelial sub-populations, characterized by diverse transcriptional programs including SOX17 (enriched in secretory epithelial cells), TTF3 and RFX3 (enriched in ciliated cells) and NR2F2 (enriched in early, partially differentiated secretory cells). Based on transcriptional signatures, we reconstructed a trajectory whereby secretory cells differentiate into ciliated cells via a RUNX3 high intermediate. Computational deconvolution of the cellular composition of advanced HGSCs based on epithelial subset signatures identified the ‘early secretory’ population as a likely precursor state for the majority of HGSCs. The signature of this rare population of cells comprised both epithelial ( EPCAM, KRT ) and mesenchymal ( THY1 , ACTA2 ) features, and was enriched in mesenchymal-type HGSCs (P = 6.7 × 10 −27 ), a group known to have particularly poor prognoses. This cellular and molecular compendium of the human fallopian tube in cancer-free women is expected to advance our understanding of the earliest stages of fallopian epithelial neoplasia.
5

Rewiring of master transcription factor cistromes during high-grade serous ovarian cancer development

Robbin Nameki et al.Apr 12, 2023
The transcription factors MECOM, PAX8, SOX17 and WT1 are candidate master regulators of high-grade serous 'ovarian' cancer (HGSC), yet their cooperative role in the hypothesized tissue of origin, the fallopian tube secretory epithelium (FTSEC) is unknown. We generated 26 epigenome (CUT&TAG, CUT&RUN, ATAC-seq and HiC) data sets and 24 profiles of RNA-seq transcription factor knock-down followed by RNA sequencing in FTSEC and HGSC models to define binding sites and gene sets regulated by these factors in cis and trans . This revealed that MECOM, PAX8, SOX17 and WT1 are lineage-enriched, super-enhancer associated master regulators whose cooperative DNA-binding patterns and target genes are re-wired during tumor development. All four TFs were indispensable for HGSC clonogenicity and survival but only depletion of PAX8 and WT1 impaired FTSEC cell survival. These four TFs were pharmacologically inhibited by transcriptional inhibitors only in HGSCs but not in FTSECs. Collectively, our data highlights that tumor-specific epigenetic remodeling is tightly related to MECOM, PAX8, SOX17 and WT1 activity and these transcription factors are targetable in a tumor-specific manner through transcriptional inhibitors.