VR
Valerie Raeymaekers
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(100% Open Access)
Cited by:
13
h-index:
4
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The SARS-CoV-2 and other human coronavirus spike proteins are fine-tuned towards temperature and proteases of the human airways

Manon Laporte et al.Nov 9, 2020
ABSTRACT The high transmissibility of SARS-CoV-2 is related to abundant replication in the upper airways, which is not observed for the other highly pathogenic coronaviruses SARS-CoV-1 and MERS-CoV. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards different parts of the respiratory tract. First, the SARS-CoV-2 spike (SARS-2-S) reached higher levels in pseudoparticles when produced at 33°C instead of 37°C. Even stronger preference for the upper airway temperature of 33°C was evident for the S protein of HCoV-229E, a common cold coronavirus. In contrast, the S proteins of SARS-CoV-1 and MERS-CoV favored 37°C, in accordance with their preference for the lower airways. Next, SARS-2-S proved efficiently activated by TMPRSS13, besides the previously identified host cell protease TMPRSS2, which may broaden the cell tropism of SARS-CoV-2. TMPRSS13 was found to be an effective spike activator for the virulent coronaviruses but not the common cold HCoV-229E virus. Activation by these proteases requires pre-cleavage of the SARS-2-S S1/S2 cleavage loop, and both its furin motif and extended loop length proved critical to achieve virus entry into airway epithelial cells. Finally, we show that the D614G mutation in SARS-2-S increases S protein stability and expression at 37°C, and promotes virus entry via cathepsin B/L activation. These spike properties might promote virus spread, potentially explaining why the G614 variant is currently predominating worldwide. Collectively, our findings indicate how the coronavirus spike protein is fine-tuned towards the temperature and protease conditions of the airways, to enhance virus transmission and pathology. SIGNIFICANCE STATEMENT The rapid spread of SARS-CoV-2, the cause of COVID-19, is related to abundant replication in the upper airways, which is not observed for other highly pathogenic human coronaviruses. We here reveal features of the coronavirus spike (S) protein, which optimize the virus towards different parts of the respiratory tract. Coronavirus spikes exhibit distinct temperature preference to precisely match the upper (~33°C) or lower (37°C) airways. We identified airway proteases that activate the spike for virus entry into cells, including one protease that may mediate coronavirus virulence. Also, a link was seen between spike stability and entry via endosomal proteases. This mechanism of spike fine-tuning could explain why the SARS-CoV-2 spike-D614G mutant is more transmissible and therefore globally predominant.
1
Citation12
0
Save
0

Evidence for influenza B virus hemagglutinin adaptation to the human host: high cleavability, acid-stability and preference for cool temperature

Manon Laporte et al.Aug 15, 2019
Abstract Influenza A virus (IAV) and influenza B virus (IBV) cause yearly epidemics with significant morbidity and mortality. When zoonotic IAVs enter the human population, the viral hemagglutinin (HA) requires adaptation to achieve sustained virus transmission. In contrast, IBV has been circulating in humans, its only host, for a long period of time. Whether this entailed adaptation of IBV HA to the human airways is unknown. To address this question, we compared seasonal IAV (A/H1N1 and A/H3N2) and IBV viruses (B/Victoria and B/Yamagata lineage) with regard to host-dependent activity of HA as the mediator of membrane fusion during viral entry. We first investigated proteolytic activation of HA, by covering all type II transmembrane serine protease (TTSP) and kallikrein enzymes, many of which proved present in human respiratory epithelium. Compared to IAV, the IBV HA0 precursor is cleaved by a broader panel of TTSPs and activated with much higher efficiency. Accordingly, knockdown of a single protease, TMPRSS2, was sufficient to abrogate spread of IAV but not IBV in human respiratory epithelial cells. Second, the HA fusion pH proved similar for IBV and human-adapted IAVs (one exception being HA of 1918 IAV). Third, IBV HA exhibited higher expression at 33°C, a temperature required for membrane fusion by B/Victoria HA. This indicates pronounced adaptation of IBV HA to the mildly acidic pH and cooler temperature of human upper airways. These distinct and intrinsic features of IBV HA are compatible with extensive host-adaptation during prolonged circulation of this respiratory virus in the human population. Importance Influenza epidemics are caused by influenza A (IAV) and influenza B (IBV) viruses. IBV causes substantial disease, however it is far less studied than IAV. While IAV originates from animal reservoirs, IBV circulates in humans only. Virus spread requires that the viral hemagglutinin (HA) is active and sufficiently stable in human airways. We here resolve how these mechanisms differ between IBV and IAV. Whereas human IAVs rely on one particular protease for HA activation, this is not the case for IBV. Superior activation of IBV by several proteases should enhance shedding of infectious particles. IBV HA exhibits acid-stability and a preference for 33°C, indicating pronounced adaptation to the human upper airways, where the pH is mildly acidic and a cooler temperature exists. These adaptive features are rationalized by the long existence of IBV in humans, and may have broader relevance for understanding the biology and evolution of respiratory viruses.
0
Citation1
0
Save
1

Effect of SARS-CoV-2 spike mutations on its activation by TMPRSS2 and TMPRSS13

Annelies Stevaert et al.Jan 27, 2022
ABSTRACT The continuous emergence of new SARS-CoV-2 variants urges better understanding of the functional motifs in the spike (S) protein and their tolerance towards mutations. We here focus on the S2’ motif which, during virus entry, requires cleavage by a cell surface protease to release the fusion peptide. Though belonging to an immunogenic region, the SARS-CoV-2 S2’ motif (811-KPSKR-815) has shown hardly any variation, with its three basic (K/R) residues being >99.99% conserved thus far. By creating a series of mutant S-pseudotyped viruses, we show that K 814 , which precedes the scissile R 815 residue, is dispensable for SARS-CoV-2 spike activation by TMPRSS2 but not TMPRSS13. The latter protease lost its activity towards SARS-CoV-2 S when the S2’ motif was swapped with that of the low pathogenic 229E coronavirus (685-RVAGR-689) and also the reverse effect was seen. This swap had no impact on TMPRSS2 activation. Also in the MERS-CoV spike, introducing a dibasic scissile motif was fully accepted by TMPRSS13 but less so by TMPRSS2. Our findings are the first to demonstrate which S2’ residues are important for SARS-CoV-2 spike activation by these two airway proteases, with TMPRSS13 exhibiting higher preference for K/R rich motifs than TMPRSS2. This preemptive insight can help to estimate the impact of S2’ motif changes as they may appear in new SARS-CoV-2 variants. IMPORTANCE Since the start of the COVID-19 pandemic, SARS-CoV-2 is undergoing worldwide selection with frequent appearance of new variants. The surveillance would benefit from proactive characterization of the functional motifs in the spike protein, the most variable viral factor. This is linked to immune evasion but also influences spike functioning in a direct manner. Remarkably, though located in a strong immunogenic region, the S2’ cleavage motif has, thus far, remained highly conserved. This suggests that its amino acid sequence is critical for spike activation by airway proteases. To investigate this, we assessed which S2’ site mutations affect processing by TMPRSS2 and TMPRSS13, two main activators of the SARS-CoV-2 spike. Being the first in its kind, our study will help to assess the biological impact of S2’ site variations as soon as they are detected during variant surveillance.