AG
Avi Gluck
Author with expertise in Coronavirus Disease 2019 Research
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(75% Open Access)
Cited by:
14
h-index:
4
/
i10-index:
4
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
44

SARS-CoV-2 utilizes a multipronged strategy to suppress host protein synthesis

Yaara Finkel et al.Nov 25, 2020
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. Here, we use RNA-sequencing and ribosome profiling along SARS-CoV-2 infection and comprehensively define the mechanisms that are utilized by SARS-CoV-2 to shutoff cellular protein synthesis. We show SARS-CoV-2 infection leads to a global reduction in translation but that viral transcripts are not preferentially translated. Instead, we reveal that infection leads to accelerated degradation of cytosolic cellular mRNAs which facilitates viral takeover of the mRNA pool in infected cells. Moreover, we show that the translation of transcripts whose expression is induced in response to infection, including innate immune genes, is impaired, implying infection prevents newly transcribed cellular mRNAs from accessing the ribosomes. Overall, our results uncover the multipronged strategy employed by SARS-CoV-2 to commandeer the translation machinery and to suppress host defenses.
44
Citation10
0
Save
1

Parsing the role of NSP1 in SARS-CoV-2 infection

Tal Fisher et al.Mar 14, 2022
Abstract Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the cause of the ongoing coronavirus disease 19 (COVID-19) pandemic. Despite its urgency, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis and its ability to antagonize innate immune responses. SARS-CoV-2 leads to shutoff of cellular protein synthesis and over-expression of nsp1, a central shutoff factor in coronaviruses, inhibits cellular gene translation. However, the diverse molecular mechanisms nsp1 employs as well as its functional importance in infection are still unresolved. By overexpressing various nsp1 mutants and generating a SARS-CoV-2 mutant in which nsp1 does not bind ribosomes, we untangle the effects of nsp1. We uncover that nsp1, through inhibition of translation and induction of mRNA degradation, is the main driver of host shutoff during SARS-CoV-2 infection. Furthermore, we find the propagation of nsp1 mutant virus is inhibited specifically in cells with intact interferon (IFN) response as well as in-vivo , in infected hamsters, and this attenuation is associated with stronger induction of type I IFN response. This illustrates that nsp1 shutoff activity has an essential role mainly in counteracting the IFN response. Overall, our results reveal the multifaceted approach nsp1 uses to shut off cellular protein synthesis and uncover the central role it plays in SARS-CoV-2 pathogenesis, explicitly through blockage of the IFN response.
1
Citation2
0
Save
0

A virally encoded high resolution screen of cytomegalovirus host dependencies

Yaara Finkel et al.Oct 30, 2023
Abstract Genetic screens have transformed our ability to interrogate cellular factor requirements in infection, yet current approaches are limited in their sensitivity, biased towards early stages of infection and provide only simplistic phenotypic information which is often based on infected cell survival. Here, by engineering human cytomegalovirus to express sgRNA libraries directly from the viral genome, we developed a sensitive, versatile, viral centric approach that allows profiling of different stages along viral infection in a pooled format. Using this approach, which we termed VECOS (Virus Encoded CRISPR-based direct readOut Screening system), we identified hundreds of novel host dependency and restriction factors and quantified their direct effects on viral genome replication, viral particle secretion and infectiousness of secreted particles, providing a multi-dimensional perspective on viral-host interactions. These high resolution measurements reveal that perturbations that alter late stages in HCMV life cycle mostly regulate HCMV particle quality rather than quantity, defining correct virion assembly as a critical stage that is heavily reliant on viral-host interactions. Overall, VECOS facilitates systematic high resolution dissection of human proteins’ role along the infection cycle, providing a roadmap for in-depth dissection of host–herpesvirus interactions.