AP
Albert Pan
Author with expertise in Structure and Function of G Protein-Coupled Receptors
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
10
(60% Open Access)
Cited by:
3,521
h-index:
27
/
i10-index:
33
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Structure and dynamics of the M3 muscarinic acetylcholine receptor

Andrew Kruse et al.Feb 1, 2012
+11
A
J
A
The X-ray crystal structure of the M3 muscarinic acetylcholine receptor bound to the bronchodilator drug tiotropium is reported; comparison of this structure with that of the M2 muscarinic acetylcholine receptor reveals key differences that could potentially be exploited to develop subtype-selective drugs. The muscarinic acetylcholine receptors (mAChRs) constitute a family of G-protein-coupled receptors. These membrane proteins are targets for treatment of a broad range of conditions, including Alzheimer's disease, schizophrenia and chronic obstructive pulmonary disease. The five mAChR subtypes (M1–M5) share a high degree of sequence homology, but show marked differences in G-protein-coupling preference and physiological function. This pair of papers from Brian Kobilka's group presents the structures of two of the five subtypes. Haga et al. report the X-ray crystal structure of the M2 receptor, which is essential for the physiological control of cardiovascular function; Kruse et al. determine the structure of the M3 receptor, active in the bronchial airways and elsewhere. Comparison of the two structures reveals key differences that could potentially be exploited to develop subtype-selective drugs. Acetylcholine, the first neurotransmitter to be identified1, exerts many of its physiological actions via activation of a family of G-protein-coupled receptors (GPCRs) known as muscarinic acetylcholine receptors (mAChRs). Although the five mAChR subtypes (M1–M5) share a high degree of sequence homology, they show pronounced differences in G-protein coupling preference and the physiological responses they mediate2,3,4. Unfortunately, despite decades of effort, no therapeutic agents endowed with clear mAChR subtype selectivity have been developed to exploit these differences5,6. We describe here the structure of the Gq/11-coupled M3 mAChR (‘M3 receptor’, from rat) bound to the bronchodilator drug tiotropium and identify the binding mode for this clinically important drug. This structure, together with that of the Gi/o-coupled M2 receptor7, offers possibilities for the design of mAChR subtype-selective ligands. Importantly, the M3 receptor structure allows a structural comparison between two members of a mammalian GPCR subfamily displaying different G-protein coupling selectivities. Furthermore, molecular dynamics simulations suggest that tiotropium binds transiently to an allosteric site en route to the binding pocket of both receptors. These simulations offer a structural view of an allosteric binding mode for an orthosteric GPCR ligand and provide additional opportunities for the design of ligands with different affinities or binding kinetics for different mAChR subtypes. Our findings not only offer insights into the structure and function of one of the most important GPCR families, but may also facilitate the design of improved therapeutics targeting these critical receptors.
0

The Dynamic Process of β2-Adrenergic Receptor Activation

Rie Nygaard et al.Jan 1, 2013
+13
R
Y
R
SummaryG-protein-coupled receptors (GPCRs) can modulate diverse signaling pathways, often in a ligand-specific manner. The full range of functionally relevant GPCR conformations is poorly understood. Here, we use NMR spectroscopy to characterize the conformational dynamics of the transmembrane core of the β2-adrenergic receptor (β2AR), a prototypical GPCR. We labeled β2AR with 13CH3ε-methionine and obtained HSQC spectra of unliganded receptor as well as receptor bound to an inverse agonist, an agonist, and a G-protein-mimetic nanobody. These studies provide evidence for conformational states not observed in crystal structures, as well as substantial conformational heterogeneity in agonist- and inverse-agonist-bound preparations. They also show that for β2AR, unlike rhodopsin, an agonist alone does not stabilize a fully active conformation, suggesting that the conformational link between the agonist-binding pocket and the G-protein-coupling surface is not rigid. The observed heterogeneity may be important for β2AR's ability to engage multiple signaling and regulatory proteins.Graphical abstractGraphical AbstractHighlights► NMR using 13CH3-ε-Met reveals dynamics of β2 adrenergic receptor (β2AR) ► NMR and computational approaches show unanticipated conformational states ► Conformational heterogeneity is observed in both unliganded and antagonist-bound β2AR ► Agonist alone does not fully stabilize the active conformation of the β2AR
0
Citation738
0
Save
0

Pathway and mechanism of drug binding to G-protein-coupled receptors

Ron Dror et al.Jul 21, 2011
+5
D
A
R
How drugs bind to their receptors--from initial association, through drug entry into the binding pocket, to adoption of the final bound conformation, or "pose"--has remained unknown, even for G-protein-coupled receptor modulators, which constitute one-third of all marketed drugs. We captured this pharmaceutically critical process in atomic detail using the first unbiased molecular dynamics simulations in which drug molecules spontaneously associate with G-protein-coupled receptors to achieve final poses matching those determined crystallographically. We found that several beta blockers and a beta agonist all traverse the same well-defined, dominant pathway as they bind to the β(1)- and β(2)-adrenergic receptors, initially making contact with a vestibule on each receptor's extracellular surface. Surprisingly, association with this vestibule, at a distance of 15 Å from the binding pocket, often presents the largest energetic barrier to binding, despite the fact that subsequent entry into the binding pocket requires the receptor to deform and the drug to squeeze through a narrow passage. The early barrier appears to reflect the substantial dehydration that takes place as the drug associates with the vestibule. Our atomic-level description of the binding process suggests opportunities for allosteric modulation and provides a structural foundation for future optimization of drug-receptor binding and unbinding rates.
0

Activation mechanism of the β 2 -adrenergic receptor

Ron Dror et al.Oct 26, 2011
+5
P
D
R
A third of marketed drugs act by binding to a G-protein-coupled receptor (GPCR) and either triggering or preventing receptor activation. Although recent crystal structures have provided snapshots of both active and inactive functional states of GPCRs, these structures do not reveal the mechanism by which GPCRs transition between these states. Here we propose an activation mechanism for the β 2 -adrenergic receptor, a prototypical GPCR, based on atomic-level simulations in which an agonist-bound receptor transitions spontaneously from the active to the inactive crystallographically observed conformation. A loosely coupled allosteric network, comprising three regions that can each switch individually between multiple distinct conformations, links small perturbations at the extracellular drug-binding site to large conformational changes at the intracellular G-protein-binding site. Our simulations also exhibit an intermediate that may represent a receptor conformation to which a G protein binds during activation, and suggest that the first structural changes during receptor activation often take place on the intracellular side of the receptor, far from the drug-binding site. By capturing this fundamental signaling process in atomic detail, our results may provide a foundation for the design of drugs that control receptor signaling more precisely by stabilizing specific receptor conformations.
0

Structural basis for modulation of a G-protein-coupled receptor by allosteric drugs

Ron Dror et al.Oct 11, 2013
+11
C
H
R
0
Citation402
0
Save
0

Finding Transition Pathways Using the String Method with Swarms of Trajectories

Albert Pan et al.Feb 22, 2008
B
D
A
An approach to find transition pathways in complex systems is presented. The method, which is related to the string method in collective variables of Maragliano et al. (J. Chem. Phys. 2006, 125, 024106), is conceptually simple and straightforward to implement. It consists of refining a putative transition path in the multidimensional space supported by a set of collective variables using the average dynamic drift of those variables. This drift is estimated on-the-fly via swarms of short unbiased trajectories started at different points along the path. Successive iterations of this algorithm, which can be naturally distributed over many computer nodes with negligible interprocessor communication, refine an initial trial path toward the most probable transition path (MPTP) between two stable basins. The method is first tested by determining the pathway for the C7eq to C7ax transition in an all-atom model of the alanine dipeptide in vacuum, which has been studied previously with the string method in collective variables. A transition path is found with a committor distribution peaked at 1/2 near the free energy maximum, in accord with previous results. Last, the method is applied to the allosteric conformational change in the nitrogen regulatory protein C (NtrC), represented here with a two-state elastic network model. Even though more than 550 collective variables are used to describe the conformational change, the path converges rapidly. Again, the committor distribution is found to be peaked around 1/2 near the free energy maximum between the two stable states, confirming that a genuine transition state has been localized in this complex multidimensional system.
91

Molecular basis of small-molecule binding to α-synuclein

Paul Robustelli et al.Jan 24, 2021
+5
C
A
P
Abstract Intrinsically disordered proteins (IDPs) are implicated in many human diseases. They have generally not been amenable to conventional structure-based drug design, however, because their intrinsic conformational variability has precluded an atomic-level understanding of their binding to small molecules. Here we present long-timescale, atomic-level molecular dynamics (MD) simulations of monomeric α-synuclein (an IDP whose aggregation is associated with Parkinson’s disease) binding the small-molecule drug fasudil in which the observed protein-ligand interactions were found to be in good agreement with previously reported NMR chemical shift data. In our simulations, fasudil, when bound, favored certain charge-charge and π-stacking interactions near the C terminus of α-synuclein, but tended not to form these interactions simultaneously, rather breaking one of these interactions and forming another nearby (a mechanism we term dynamic shuttling ). Further simulations with small molecules chosen to modify these interactions yielded binding affinities and key structural features of binding consistent with subsequent NMR experiments, suggesting the potential for MD-based strategies to facilitate the rational design of small molecules that bind with disordered proteins.
91
Citation8
0
Save
0

Structural mechanism for Bruton's tyrosine kinase activation at the cell membrane

Qi Wang et al.Apr 18, 2018
+2
S
Y
Q
Bruton's tyrosine kinase (Btk) is critical for B-cell proliferation and activation, and the development of Btk inhibitors is a vigorously pursued strategy for the treatment of various B-cell malignancies. A detailed mechanistic understanding of Btk activation has, however, been lacking. Here, inspired by a previous suggestion that Btk activation might depend on dimerization of its lipid-binding PH-TH module on the cell membrane, we performed long-timescale molecular dynamics simulations of membrane-bound PH-TH modules and observed that they dimerized into a single predominant conformation. We found that the phospholipid PIP3 stabilized the dimer allosterically by binding at multiple sites, and that the effects of PH-TH mutations on dimer stability were consistent with their known effects on Btk activity. Taken together, our simulation results strongly suggest that PIP3-mediated dimerization of Btk at the cell membrane is a critical step in Btk activation.
0

EE420 Development and Validation of a Markov Model for the Evaluation of a One-Time Universal Screening for Hepatitis B in Adults

Albert Pan et al.Jun 1, 2024
+2
D
R
A
0

Atomic-level characterization of protein-protein association

Albert Pan et al.Apr 17, 2018
+3
K
D
A
Despite the biological importance of protein-protein complexes, determining their structures and association mechanisms remains an outstanding challenge. Here, we report the results of atomic-level simulations in which we observed five protein-protein pairs repeatedly associate to, and dissociate from, their experimentally determined native complexes using a new molecular dynamics (MD)-based sampling approach that does not make use of any prior structural information about the complexes. To study association mechanisms, we performed additional, conventional MD simulations, in which we observed numerous spontaneous association events. A shared feature of native association for these five structurally and functionally diverse protein systems was that if the proteins made contact far from the native interface, the native state was reached by dissociation and eventual re-association near the native interface, rather than by extensive interfacial exploration while the proteins remained in contact. At the transition state (the conformational ensemble from which association to the native complex and dissociation are equally likely), the protein-protein interfaces were still highly hydrated, and no more than 20% of native contacts had formed.