Nesli-Ece Şen
Author with expertise in Molecular Mechanisms of Neurodegenerative Diseases
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(33% Open Access)
Cited by:
10
h-index:
9
/
i10-index:
9
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Atxn2-CAG100-KnockIn mouse spinal cord shows progressive TDP43 pathology associated with cholesterol biosynthesis suppression

Júlia Canet-Pons et al.Nov 11, 2019
Large polyglutamine expansions in Ataxin-2 (ATXN2) cause multi-system nervous atrophy in Spinocerebellar Ataxia type 2 (SCA2). Intermediate size expansions carry a risk for selective motor neuron degeneration, known as Amyotrophic Lateral Sclerosis (ALS). Conversely, the depletion of ATXN2 prevents disease progression in ALS. Although ATXN2 interacts directly with RNA, and in ALS pathogenesis there is a crucial role of RNA toxicity, the affected functional pathways remain ill defined. Here, we examined an authentic SCA2 mouse model with Atxn2-CAG100-KnockIn for a first definition of molecular mechanisms in spinal cord pathology. Neurophysiology of lower limbs detected sensory neuropathy rather than motor denervation. Triple immunofluorescence demonstrated cytosolic ATXN2 aggregates sequestrating TDP43 and TIA1 from the nucleus. In immunoblots, this was accompanied by elevated CASP3, RIPK1 and PQBP1 abundance. RT-qPCR showed increase of Grn, Tlr7 and Rnaset2 mRNA versus Eif5a2, Dcp2, Uhmk1 and Kif5a decrease. These SCA2 findings overlap well with known ALS features. Similar to other ataxias and dystonias, decreased mRNA levels for Unc80, Tacr1, Gnal, Ano3, Kcna2, Elovl5 and Cdr1 contrasted with Gpnmb increase. Preterminal stage tissue showed strongly activated microglia containing ATXN2 aggregates, with parallel astrogliosis. Global transcriptome profiles from stages of incipient motor deficit versus preterminal age identified molecules with progressive downregulation, where a cluster of cholesterol biosynthesis enzymes including Dhcr24, Msmo1, Idi1 and Hmgcs1 was prominent. Gas chromatography demonstrated a massive loss of crucial cholesterol precursor metabolites. Overall, the ATXN2 protein aggregation process affects diverse subcellular compartments, in particular stress granules, endoplasmic reticulum and receptor tyrosine kinase signaling. These findings identify new targets and potential biomarkers for neuroprotective therapies.
0

Atxn2-CAG100-knock-in affects mouse lifespan and vestibulo-cerebellar function via neural disconnection

Melanie Halbach et al.May 30, 2018
Unstable expansions in the Q22-polyglutamine domain of human ATXN2 mediate risks for motor neuron diseases such as ALS/FTLD or cause the autosomal dominant Spinocerebellar Ataxia type 2 (SCA2), but the pathogenesis is not understood and models are unavailable. We generated a novel knock-in mouse line with CAG100 expansion in Atxn2, transmitted unstably. The mutant protein accumulated in neuronal cytosolic aggregates, with a characteristic pattern of multi-system-atrophy. Loss-of-function phenotypes included less mutant offspring, initial weight gain and motor hyperactivity. Progressive toxic aggregation effects started around 20 weeks in homozygous animals showing weight loss, reduced muscle strength and gait ataxia. Lifespan was decreased. In the cerebellum, neuronal soma and dendrites were remarkably spared. However, myelin proteins MBP, CNP, PLP1 and transcripts Mal, Mobp, Rtn4 decreased markedly, especially adhesion factors MAG and MOG. In neurons, strong reductions were found for mRNAs of perineuronal elements Hapln1, Hapln2, Hapln4, of axonal myelin interactors Prnp and Klk6. At protein level, the adhesion factor neuroplastin and neurofilaments were strongly reduced, while presynaptic alpha-synuclein increased two-fold. Overall, this authentic SCA2 mouse model elucidates how altered function and aggregation toxicity of ATXN2 conspire to trigger axon-myelin disconnection. This model will promote the development of neuroprotective therapies and disease biomarkers.