HL
Ho‐Joon Lee
Author with expertise in Pancreatic Cancer Research and Treatment
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
19
(68% Open Access)
Cited by:
2,146
h-index:
36
/
i10-index:
71
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Cysteine depletion induces pancreatic tumor ferroptosis in mice

Michael Badgley et al.Apr 2, 2020
+27
H
D
M
Ferroptotic cell death and cancer Cell death can occur through different mechanisms, several of which are being explored as potential targets for cancer treatment. One form of cell death that has attracted recent interest is ferroptosis, which is triggered by high intracellular levels of lipid reactive oxygen species. Pancreatic cancer cells have high levels of reactive oxygen species but manage to avoid ferroptosis by importing extracellular cysteine. Studying mice bearing pancreatic tumors, Badgley et al. found that administration of a drug inhibiting cysteine import induced tumor-selective ferroptosis and inhibited tumor growth. Further work will be required to determine whether this therapeutic strategy will be effective in human pancreatic cancer, a tumor type for which new treatments are urgently needed. Science , this issue p. 85
0

Oocyte Generation in Adult Mammalian Ovaries by Putative Germ Cells in Bone Marrow and Peripheral Blood

Joshua Johnson et al.Jul 1, 2005
+11
M
J
J
It has been suggested that germline stem cells maintain oogenesis in postnatal mouse ovaries. Here we show that adult mouse ovaries rapidly generate hundreds of oocytes, despite a small premeiotic germ cell pool. In considering the possibility of an extragonadal source of germ cells, we show expression of germline markers in bone marrow (BM). Further, BM transplantation restores oocyte production in wild-type mice sterilized by chemotherapy, as well as in ataxia telangiectasia-mutated gene-deficient mice, which are otherwise incapable of making oocytes. Donor-derived oocytes are also observed in female mice following peripheral blood transplantation. Although the fertilizability and developmental competency of the BM and peripheral blood-derived oocytes remain to be established, their morphology, enclosure within follicles, and expression of germ-cell- and oocyte-specific markers collectively support that these cells are bona fide oocytes. These results identify BM as a potential source of germ cells that could sustain oocyte production in adulthood.
0
Citation679
0
Save
1

Macrophage-Released Pyrimidines Inhibit Gemcitabine Therapy in Pancreatic Cancer

Christopher Halbrook et al.Feb 28, 2019
+20
I
C
C
Pancreatic ductal adenocarcinoma (PDA) is characterized by abundant infiltration of tumor-associated macrophages (TAMs). TAMs have been reported to drive resistance to gemcitabine, a frontline chemotherapy in PDA, though the mechanism of this resistance remains unclear. Profiling metabolite exchange, we demonstrate that macrophages programmed by PDA cells release a spectrum of pyrimidine species. These include deoxycytidine, which inhibits gemcitabine through molecular competition at the level of drug uptake and metabolism. Accordingly, genetic or pharmacological depletion of TAMs in murine models of PDA sensitizes these tumors to gemcitabine. Consistent with this, patients with low macrophage burden demonstrate superior response to gemcitabine treatment. Together, these findings provide insights into the role of macrophages in pancreatic cancer therapy and have potential to inform the design of future treatments. Additionally, we report that pyrimidine release is a general function of alternatively activated macrophage cells, suggesting an unknown physiological role of pyrimidine exchange by immune cells.
0

Regulatory T-cell Depletion Alters the Tumor Microenvironment and Accelerates Pancreatic Carcinogenesis

Yaqing Zhang et al.Jan 7, 2020
+20
N
J
Y
Abstract Regulatory T cells (Treg) are abundant in human and mouse pancreatic cancer. To understand the contribution to the immunosuppressive microenvironment, we depleted Tregs in a mouse model of pancreatic cancer. Contrary to our expectations, Treg depletion failed to relieve immunosuppression and led to accelerated tumor progression. We show that Tregs are a key source of TGFβ ligands and, accordingly, their depletion reprogramed the fibroblast population, with loss of tumor-restraining, smooth muscle actin–expressing fibroblasts. Conversely, we observed an increase in chemokines Ccl3, Ccl6, and Ccl8 leading to increased myeloid cell recruitment, restoration of immune suppression, and promotion of carcinogenesis, an effect that was inhibited by blockade of the common CCL3/6/8 receptor CCR1. Further, Treg depletion unleashed pathologic CD4+ T-cell responses. Our data point to new mechanisms regulating fibroblast differentiation in pancreatic cancer and support the notion that fibroblasts are a heterogeneous population with different and opposing functions in pancreatic carcinogenesis. Significance: Here, we describe an unexpected cross-talk between Tregs and fibroblasts in pancreatic cancer. Treg depletion resulted in differentiation of inflammatory fibroblast subsets, in turn driving infiltration of myeloid cells through CCR1, thus uncovering a potentially new therapeutic approach to relieve immunosuppression in pancreatic cancer. See related commentary by Aykut et al., p. 345. This article is highlighted in the In This Issue feature, p. 327
0
Citation285
0
Save
8

An interactome landscape of SARS-CoV-2 virus-human protein-protein interactions by protein sequence-based multi-label classifiers

Ho‐Joon LeeNov 8, 2021
H
ABSTRACT The new coronavirus species, SARS-CoV-2, caused an unprecedented global pandemic of COVID-19 disease since late December 2019. A comprehensive characterization of protein-protein interactions (PPIs) between SARS-CoV-2 and human cells is a key to understanding the infection and preventing the disease. Here we present a novel approach to predict virus-host PPIs by multi-label machine learning classifiers of random forests and XGBoost using amino acid composition profiles of virus and human proteins. Our models harness a large-scale database of Viruses.STRING with >80,000 virus-host PPIs along with evidence scores for multi-level evidence prediction, which is distinct from predicting binary interactions in previous studies. Our multi-label classifiers are based on 5 evidence levels binned from evidence scores. Our best model of XGBoost achieves 74% AUC and 68% accuracy on average in 10-fold cross validation. The most important amino acids are cysteine and histidine. In addition, our model predicts experimental PPIs with higher accuracy than text mining-based PPIs by 4% despite their smaller data size by more than 6-fold. We then predict evidence levels of ∼2,000 SARS-CoV-2 virus-human PPIs from public experimental proteomics data. Interactions with SARS-CoV-2 Nsp7b show high evidence. We also predict evidence levels of all pairwise PPIs of ∼550,000 between the SARS-CoV-2 and human proteomes to provide a draft virus-host interactome landscape for SARS-CoV-2 infection in humans in a comprehensive and unbiased way in silico . Most human proteins from 140 highest evidence predictions interact with SARS-CoV-2 Nsp7, Nsp1, and ORF14, with significant enrichment in the top 2 pathways of vascular smooth muscle contraction (CALD1, NPR2, CALML3) and Myc targets (CBX3, PES1). Our prediction also suggests that histone H2A components are targeted by multiple SARS-CoV-2 proteins.
8
Citation8
0
Save
0

Metabolic signatures of regulation by phosphorylation and acetylation

K. Smith et al.Nov 11, 2019
S
H
F
K
Abstract Acetylation and phosphorylation are highly conserved post-translational modifications (PTMs) that regulate cellular metabolism, yet how metabolic control is shared between these PTMs is unknown. Here we analyze transcriptome, proteome, acetylome, and phosphoproteome datasets in E.coli , S.cerevisiae , and mammalian cells across diverse conditions using CAROM, a new approach that uses genome-scale metabolic networks and machine-learning to classify regulation by PTMs. We built a single machine-learning model that accurately distinguished reactions controlled by each PTM in a condition across all three organisms based on reaction attributes (AUC>0.8). Our model uncovered enzymes regulated by phosphorylation during a mammalian cell-cycle, which we validate using phosphoproteomics. Interpreting the machine-learning model using game-theory uncovered enzyme properties including network connectivity, essentiality, and condition-specific factors such as maximum flux that differentiate regulation by phosphorylation from acetylation. The conserved and predictable partitioning of metabolic regulation identified here between these PTMs can enable rational engineering of regulatory circuits. Graphical Abstract
0
Citation4
0
Save
14

A redox cycle with complex II promotes sulfide quinone oxidoreductase dependent H2S oxidation

Rajendra Kumar et al.Sep 8, 2021
+6
A
A
R
The dueling roles of H 2 S as an endogenously synthesized respiratory substrate and as a toxin, raise questions as to how it is cleared when the electron transport chain is inhibited. Sulfide quinone oxidoreductase (SQOR) is a mitochondrial inner membrane flavoprotein that catalyzes the first step in the H 2 S oxidation pathway and uses coenzyme Q (CoQ) as an electron acceptor. However, complex IV poisoning by H 2 S inhibits complex III-dependent recycling of CoQH 2 , which is needed to sustain H 2 S oxidation. We have discovered that under these conditions, reversal of complex II activity using fumarate as an electron acceptor, establishes a new redox cycle with SQOR. The purine nucleotide cycle and the malate aspartate shuttle are sources of fumarate in H 2 S treated cells, which accumulate succinate. Complex II knockdown decreases the efficiency of H 2 S clearance and increases recovery time to the basal respiration rate in H 2 S treated cells. In contrast, attenuation of complex I, which is a major competitor for the mitochondrial CoQ pool, has the opposite effects. Targeted knockout of complex II in murine intestinal epithelial cells that are routinely exposed to microbiota derived H 2 S, decreases serum, urine, and fecal thiosulfate, a product of H 2 S oxidation. Our study identifies a metabolic reprogramming response to H 2 S that furnishes fumarate as an alternate electron acceptor and supports H 2 S oxidation independent of complex IV activity. Complex II-linked redox cycling of SQOR has important implications for gut H 2 S metabolism as colonocytes are routinely exposed to high concentrations of this gas derived from the microbiota. One Sentence Summary Reversal of complex II sustains and prioritizes H 2 S oxidation when respiration is poisoned.
14
Citation1
0
Save
5

Dynamic metabolic network modeling of a mammalian cell cycle using time-course multi-omics data

Ho‐Joon Lee et al.Oct 13, 2021
+2
F
M
H
ABSTRACT Cell cycle is a fundamental process for cell growth and proliferation, and its dysregulation leads to many diseases. How metabolic networks are regulated and rewired during the cell cycle is unknown. Here we apply a dynamic genome-scale metabolic modeling framework (DFA) to simulate a cell cycle of cytokine-activated murine pro-B cells. Phase-specific reaction activity predicted by DFA using time-course metabolomics were validated using matched time-course proteomics and phospho-proteomics data. Our model correctly predicted changes in methionine metabolism at the G1/S transition and the activation of lysine metabolism, nucleotides synthesis, fatty acid elongation and heme biosynthesis at the critical G0/G1 transition into cell growth and proliferation. Metabolic fluxes predicted from proteomics and phosphoproteomics constrained metabolic models were highly consistent with DFA fluxes and revealed that most reaction fluxes are regulated indirectly. Our model can help predict the impact of changes in nutrients, enzymes, or regulators on this critical cellular process.
5
Citation1
0
Save
7

Network controllability enrichment analysis reveals that SARS-CoV-2 infection tends to target indispensable nodes of a directed human protein-protein interaction network

Ho‐Joon LeeApr 19, 2021
H
ABSTRACT The COVID-19 disease has been a global threat caused by the new coronavirus species, SARS-CoV-2, since early 2020 with an urgent need for therapeutic interventions. In order to provide insight into human proteins targeted by SARS-CoV-2, here we study a directed human protein-protein interaction network (dhPPIN) based on our previous work on network controllability of virus targets. We previously showed that human proteins targeted by viruses tend to be those whose removal in a dhPPIN requires more control of the network dynamics, which were classified as indispensable nodes. In this study we introduce a more comprehensive rank-based enrichment analysis of our previous dhPPIN for SARS-CoV-2 infection and show that SARS-CoV-2 also tends to target indispensable nodes in the dhPPIN using multiple proteomics datasets, supporting validity and generality of controllability analysis of viral infection in humans. Also, we find differential controllability among SARS-CoV-2, SARS-CoV-1, and MERS-CoV from a comparative proteomics study. Moreover, we show functional significance of indispensable nodes by analyzing heterogeneous datasets from a genome-wide CRISPR screening study, a time-course phosphoproteomics study, and a genome-wide association study. Specifically, we identify SARS-CoV-2 ORF3A as most frequently interacting with indispensable proteins in the dhPPIN, which are enriched in TGF-beta signaling and tend to be sources nodes and interact with each other. Finally, we built an integrated network model of ORF3A-interacting indispensable proteins with multiple functional supports to provide hypotheses for experimental validation as well as therapeutic opportunities. Therefore, a sub-network of indispensable proteins targeted by SARS-CoV-2 could serve as a prioritized network of drug targets and a basis for further functional and mechanistic studies from a network controllability perspective.
7
Citation1
0
Save
0

Induction of pancreatic tumor-selective ferroptosis through modulation of cystine import

Michael Badgley et al.Nov 1, 2019
+28
S
A
M
Pancreatic ductal adenocarcinoma (PDA) is the third-leading cause of cancer mortality in the US and is highly resistant to classical, targeted, and immune therapies. We show that human PDA cells are dependent on the provision of exogenous cystine to avert a catastrophic accumulation of lipid reactive oxygen species (ROS) that, left unchecked, leads to ferroptotic cell death, both in vitro and in vivo. Using a dual-recombinase genetically engineered model, we found that acute deletion of Slc7a11 led to tumor-selective ferroptosis, tumor stabilizations/regressions, and extended overall survival. The mechanism of ferroptosis induction in PDA cells required the concerted depletion of both glutathione and coenzyme A, highlighting a novel branch of ferroptosis-relevant metabolism. Finally, we found that cystine depletion in vivo using the pre-IND agent cyst(e)inase phenocopied Slc7a11 deletion, inducing tumor-selective ferroptosis and disease stabilizations/regressions in the well-validated KPC model of PDA.
Load More