JL
Joshua Lewis
Author with expertise in Genomic Studies and Association Analyses
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
7
(57% Open Access)
Cited by:
1,819
h-index:
37
/
i10-index:
69
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

A Genome-Wide Association Search for Type 2 Diabetes Genes in African Americans

Nicholette Palmer et al.Jan 4, 2012
+21
A
C
N
African Americans are disproportionately affected by type 2 diabetes (T2DM) yet few studies have examined T2DM using genome-wide association approaches in this ethnicity. The aim of this study was to identify genes associated with T2DM in the African American population. We performed a Genome Wide Association Study (GWAS) using the Affymetrix 6.0 array in 965 African-American cases with T2DM and end-stage renal disease (T2DM-ESRD) and 1029 population-based controls. The most significant SNPs (n = 550 independent loci) were genotyped in a replication cohort and 122 SNPs (n = 98 independent loci) were further tested through genotyping three additional validation cohorts followed by meta-analysis in all five cohorts totaling 3,132 cases and 3,317 controls. Twelve SNPs had evidence of association in the GWAS (P<0.0071), were directionally consistent in the Replication cohort and were associated with T2DM in subjects without nephropathy (P<0.05). Meta-analysis in all cases and controls revealed a single SNP reaching genome-wide significance (P<2.5×10−8). SNP rs7560163 (P = 7.0×10−9, OR (95% CI) = 0.75 (0.67–0.84)) is located intergenically between RND3 and RBM43. Four additional loci (rs7542900, rs4659485, rs2722769 and rs7107217) were associated with T2DM (P<0.05) and reached more nominal levels of significance (P<2.5×10−5) in the overall analysis and may represent novel loci that contribute to T2DM. We have identified novel T2DM-susceptibility variants in the African-American population. Notably, T2DM risk was associated with the major allele and implies an interesting genetic architecture in this population. These results suggest that multiple loci underlie T2DM susceptibility in the African-American population and that these loci are distinct from those identified in other ethnic populations.
0
Citation1,808
0
Save
1

Clonal hematopoiesis is driven by aberrant activation of TCL1A

Joshua Weinstock et al.Dec 13, 2021
+109
A
N
J
Abstract A diverse set of driver genes, such as regulators of DNA methylation, RNA splicing, and chromatin remodeling, have been associated with pre-malignant clonal expansion of hematopoietic stem cells (HSCs). The factors mediating expansion of these mutant clones remain largely unknown, partially due to a paucity of large cohorts with longitudinal blood sampling. To circumvent this limitation, we developed and validated a method to infer clonal expansion rate from single timepoint data called PACER (passenger-approximated clonal expansion rate). Applying PACER to 5,071 persons with clonal hematopoiesis accurately recapitulated the known fitness effects due to different driver mutations. A genome-wide association study of PACER revealed that a common inherited polymorphism in the TCL1A promoter was associated with slower clonal expansion. Those carrying two copies of this protective allele had up to 80% reduced odds of having driver mutations in TET2, ASXL1, SF3B1, SRSF2 , and JAK2 , but not DNMT3A. TCL1A was not expressed in normal or DNMT3A -mutated HSCs, but the introduction of mutations in TET2 or ASXL1 by CRISPR editing led to aberrant expression of TCL1A and expansion of HSCs in vitro. These effects were abrogated in HSCs from donors carrying the protective TCL1A allele. Our results indicate that the fitness advantage of multiple common driver genes in clonal hematopoiesis is mediated through TCL1A activation. PACER is an approach that can be widely applied to uncover genetic and environmental determinants of pre-malignant clonal expansion in blood and other tissues.
1
Citation9
0
Save
9

Mosaic chromosomal alterations in blood across ancestries via whole-genome sequencing

Yasminka Jakubek et al.Nov 8, 2022
+43
A
Y
Y
ABSTRACT Mosaic mutations in blood are common with increasing age and are prognostic markers for cancer, cardiovascular dysfunction and other diseases. This group of acquired mutations include megabase-scale mosaic chromosomal alterations (mCAs). These large mutations have mainly been surveyed using SNP array data from individuals of European (EA) or Japanese genetic ancestry. To gain a better understanding of mCA rates and associated risk factors in genetically diverse populations, we surveyed whole genome sequencing data from 67,390 individuals, including 20,132 individuals of African ancestry (AA), and 7,608 of Hispanic ancestry (HA) with deep (30X) whole genome sequencing data from the NHLBI Trans Omics for Precision Medicine (TOPMed) program. We adapted an existing mCA calling algorithm for application to WGS data, and observed higher sensitivity with WGS data, compared with array-based data, in uncovering mCAs at low mutant cell fractions. As in previous reports, we observed a strong association with age and a non-uniform distribution of mCAs across the genome. The presence of autosomal (but not chromosome X) mCAs was associated with an increased risk of both lymphoid and myeloid malignancies. After adjusting for age, we found that individuals of European ancestry have the highest rates of autosomal mCAs, mirroring the higher rate of leukemia in this group. Our analysis also uncovered higher rates of chromosome X mCAs in AA and HA compared to EA, again after adjusting for age. Germline variants in ATM and MPL showed strong associations with mCAs in cis , including ancestry specific variants. And rare variant gene-burden analysis confirmed the association of putatively protein altering variants in ATM and MPL with mCAs in cis . Individual rare variants in DCPS, ADM17, PPP1R16B , and TET2 were all associated with autosomal mCAs and rare variants in OR4C16 were associated with chromosome X mCAs in females. There was significant enrichment of co-occurrence of CHIP mutations and mCAs both altering cancer associated genes TET2, DNMT3A, JAK2, CUX1 , and TP53 . Overall, our study demonstrates that rates of mCAs differ across populations and that rare inherited germline variants are strongly associated with mCAs across genetically diverse populations. These results strongly motivate further studies of mCAs in under-represented populations to better understand the causes and consequences of this class of somatic variation.
9
Citation2
0
Save
0

find-tfbs: a tool to identify functional non-coding variants associated with complex human traits using open chromatin maps and phased whole-genome sequences

Sébastian Bellefon et al.Nov 23, 2020
+14
A
L
S
Abstract Motivation Whole-genome DNA sequencing (WGS) enables the discovery of non-coding variants, but tools are lacking to prioritize the subset that functionally impacts human phenotypes. DNA sequence variants that disrupt or create transcription factor binding sites (TFBS) can modulate gene expression. find-tfbs efficiently scans phased WGS in large cohorts to identify and count TFBSs in regulatory sequences. This information can then be used in association testing to find putatively functional non-coding variants associated with complex human diseases or traits. Results We applied find-tfbs to discover functional non-coding variants associated with hematological traits in the NHLBI Trans-Omics for Precision Medicine (TOPMed) WGS dataset (N max =44,709). We identified >2000 associations at P <1×10 −9 , implicating specific blood cell-types, transcription factors and causal genes. The vast majority of these associations are captured by variants identified in large genome-wide association studies (GWAS) for blood-cell traits. find-tfbs is computationally efficient and robust, allowing for the rapid identification of non-coding variants associated with multiple human phenotypes in very large sample size. Availability https://github.com/Helkafen/find-tfbs and https://github.com/Helkafen/find-tfbs-demo Contacts sebastian.meric.de.bellefon@umontreal.ca and guillaume.lettre@umontreal.ca Supplementary information Supplementary data are available.
0

Genome Sequencing Unveils a New Regulatory Landscape of Platelet Reactivity

Ali Keramati et al.May 16, 2019
+20
B
M
A
Exaggerated platelet aggregation at the site of vascular injury is the underlying pathophysiology of thrombotic diseases. Here, we conduct the largest whole genome sequencing (WGS) effort to uncover the genetic determinants of platelet aggregation. Leveraging 3,855 NHLBI Trans-Omics for Precision Medicine (TOPMed) individuals deeply phenotyped for platelet aggregation, we identify 18 loci using single-variant approaches. This includes the novel RGS18 locus encoding a myeloerythroid lineage-specific regulator of G-protein signaling that co-localizes with eQTL signatures for RGS18 expression in platelets. A gene-based approach focusing on deleterious coding variants identifies the SVEP1 gene, previously shown to be associated with coronary artery disease, as a novel determinant of platelet aggregation. Finally, in an integrative approach leveraging epigenetic data on megakaryocytes, we find strong association between rare variants mapping to a super enhancer region for PEAR1. This is a novel finding implicating the importance of rare variants with regulatory potential in a previously documented GWAS-identified locus.
0

Efficient variant set mixed model association tests for continuous and binary traits in large-scale whole genome sequencing studies

Han Chen et al.Aug 20, 2018
+46
C
J
H
With advances in Whole Genome Sequencing (WGS) technology, more advanced statistical methods for testing genetic association with rare variants are being developed. Methods in which variants are grouped for analysis are also known as variant-set, gene-based, and aggregate unit tests. The burden test and Sequence Kernel Association Test (SKAT) are two widely used variant-set tests, which were originally developed for samples of unrelated individuals and later have been extended to family data with known pedigree structures. However, computationally-efficient and powerful variant-set tests are needed to make analyses tractable in large-scale WGS studies with complex study samples. In this paper, we propose the variant-Set Mixed Model Association Tests (SMMAT) for continuous and binary traits using the generalized linear mixed model framework. These tests can be applied to large-scale WGS studies involving samples with population structure and relatedness, such as in the National Heart, Lung, and Blood Institute's Trans-Omics for Precision Medicine (TOPMed) program. SMMAT tests share the same null model for different variant sets, and a virtue of this null model, which includes covariates only, is that it needs to be only fit once for all tests in each genome-wide analysis. Simulation studies show that all the proposed SMMAT tests correctly control type I error rates for both continuous and binary traits in the presence of population structure and relatedness. We also illustrate our tests in a real data example of analysis of plasma fibrinogen levels in the TOPMed program (n = 23,763), using the Analysis Commons, a cloud-based computing platform.
0

Whole Genome Sequencing Based Analysis of Inflammation Biomarkers in the Trans-Omics for Precision Medicine (TOPMed) Consortium

Min-Zhi Jiang et al.Jan 1, 2023
+44
X
S
M
Inflammation biomarkers can provide valuable insight into the role of inflammatory processes in many diseases and conditions. Sequencing based analyses of such biomarkers can also serve as an exemplar of the genetic architecture of quantitative traits. To evaluate the biological insight, which can be provided by a multi-ancestry, whole-genome based association study, we performed a comprehensive analysis of 21 inflammation biomarkers from up to 38,465 individuals with whole-genome sequencing from the Trans-Omics for Precision Medicine (TOPMed) program. We identified 22 distinct single-variant associations across 6 traits -- E-selectin, intercellular adhesion molecule 1, interleukin-6, lipoprotein-associated phospholipase A2 activity and mass, and P-selectin -- that remained significant after conditioning on previously identified associations for these inflammatory biomarkers. We further expanded upon known biomarker associations by pairing the single-variant analysis with a rare variant set-based analysis that further identified 19 significant rare variant set-based associations with 5 traits. These signals were statistically distinct from both significant single variant association signals within TOPMed and genetic signals observed in prior studies, demonstrating the complementary value of performing both single and rare variant analyses when analyzing quantitative traits. We also confirm several previously reported signals from semi-quantitative proteomics platforms. Many of these signals demonstrate the extensive allelic heterogeneity and ancestry-differentiated variant-trait associations common for inflammation biomarkers, a characteristic we hypothesize will be increasingly observed with well-powered, large-scale analyses of complex traits.