A new version of ResearchHub is available.Try it now
Healthy Research Rewards
ResearchHub is incentivizing healthy research behavior. At this time, first authors of open access papers are eligible for rewards. Visit the publications tab to view your eligible publications.
Got it
JL
Jiming Li
Author with expertise in Mechanisms of Plant Immune Response
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
3
(67% Open Access)
Cited by:
11
h-index:
30
/
i10-index:
83
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
32

Single-cell Stereo-seq enables cell type-specific spatial transcriptome characterization in Arabidopsis leaves

Keke Xia et al.Oct 21, 2021
Summary Understanding the complex functions of plant leaves requires spatially resolved gene expression profiling with single-cell resolution. However, although in situ gene expression profiling technologies have been developed, this goal has not yet been achieved. Here, we present the first in situ single-cell transcriptome profiling in plant, scStereo-seq (single-cell SpaTial Enhanced REsolution Omics-sequencing), which enabled the bona fide single-cell spatial transcriptome of Arabidopsis leaves. We successfully characterized subtle but significant transcriptomic differences between upper and lower epidermal cells. Furthermore, with high-resolution location information, we discovered the cell type-specific spatial gene expression gradients from main vein to leaf edge. By reconstructing those spatial gradients, we show for the first time the distinct spatial developmental trajectories of vascular cells and guard cells. Our findings show the importance of incorporating spatial information for answering complex biological questions in plant, and scStereo-seq offers a powerful single cell spatially resolved transcriptomic strategy for plant biology.
32
Citation6
0
Save
0

Single-cell transcriptome reveals the redifferentiation trajectories of the early stage of de novo shoot regeneration in Arabidopsis thaliana

Guangyu Liu et al.Jan 2, 2022
Abstract De novo shoot regeneration from a callus plays a crucial role in both plant biotechnology and the fundamental research of plant cell totipotency. Recent studies have revealed many regulatory factors involved in this developmental process. However. our knowledge of the cell heterogeneity and cell fate transition during de novo shoot regeneration is still limited. Here, we performed time-series single-cell transcriptome experiments to reveal the cell heterogeneity and redifferentiation trajectories during the early stage of de novo shoot regeneration. Based on the single-cell transcriptome data of 35,669 cells at five-time points, we successfully determined seven major cell populations in this developmental process and reconstructed the redifferentiation trajectories. We found that all cell populations resembled root identities and undergone gradual cell-fate transitions. In detail, the totipotent callus cells differentiated into pluripotent QC-like cells and then gradually developed into less differentiated cells that have multiple root-like cell identities, such as pericycle-like cells. According to the reconstructed redifferentiation trajectories, we discovered that the canonical regeneration-related genes were dynamically expressed at certain stages of the redifferentiation process. Moreover, we also explored potential transcription factors and regulatory networks that might be involved in this process. The transcription factors detected at the initial stage, QC-like cells, and the end stage provided a valuable resource for future functional verifications. Overall, this dataset offers a unique glimpse into the early stages of de novo shoot regeneration, providing a foundation for a comprehensive analysis of the mechanism of de novo shoot regeneration.
0
Citation5
0
Save
0

A partial pathogenicity chromosome in Fusarium oxysporum is sufficient to cause disease and can be horizontally transferred

Jiming Li et al.Jan 20, 2020
During host colonization, plant pathogenic fungi secrete proteins, called effectors, to facilitate infection. Collectively, effectors may defeat the plant immune system, but usually not all effectors are equally important for infecting a particular host plant. In Fusarium oxysporum f.sp. lycopersici, all known effector genes – also called SIX genes – are located on a single accessory chromosome which is required for pathogenicity and can also be horizontally transferred to another strain. To narrow down the minimal region required for virulence, we selected partial pathogenicity chromosome deletion strains by fluorescence-assisted cell sorting of a strain in which the two arms of the pathogenicity chromosome were labelled with GFP and RFP, respectively. By testing the virulence of these deletion mutants, we show that the complete long arm and part of the short arm of the pathogenicity chromosome are not required for virulence. In addition, we demonstrate that smaller versions of the pathogenicity chromosome can also be transferred to a non-pathogenic strain and they are sufficient to turn the non-pathogen into a pathogen. Surprisingly, originally non-pathogenic strains that had received a smaller version of the pathogenicity chromosome were much more aggressive than recipients with a complete pathogenicity chromosome. Whole genome sequencing analysis revealed that partial deletions of the pathogenicity chromosome occurred mainly close to repeats, and that spontaneous duplication of sequences in accessory regions is frequent both in chromosome deletion strains and in horizontal transfer (recipient) strains.