JW
Jonathan Wilson
Author with expertise in Population Genetic Structure and Dynamics
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
5
(80% Open Access)
Cited by:
9
h-index:
6
/
i10-index:
6
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

Copy number variation contributes to parallel local adaptation in an invasive plant

Jonathan Wilson et al.Jul 6, 2024
Adaptation is a critical determinant of the diversification, persistence, and geographic range limits of species. Yet the genetic basis of adaptation is often unclear and potentially underpinned by a wide range of mutational types - from single nucleotide changes to large-scale alterations of chromosome structure. Copy number variation (CNV) is thought to be an important source of adaptive genetic variation, as indicated by decades of candidate gene studies that point to CNVs underlying rapid adaptation to strong selective pressures. Nevertheless, population genomic studies of CNVs face unique logistical challenges not encountered by other forms of genetic variation. Consequently, few studies have systematically investigated the contributions of CNVs to adaptation at a genome-wide scale. We present a genome-wide analysis of CNV contributions to the adaptation of an invasive weed, Ambrosia artemisiifolia, across its native and invasive ranges in North America and Europe, respectively. CNVs show clear signatures of parallel local adaptation between native and invasive ranges, implying widespread reuse of CNVs during adaptation to shared geographic patterns of selection. Using a local principal component analysis to genotype CNV regions in historic samples that span the last two centuries, we identified 16 large CNV regions of up to 11.85 megabases in length, six of which show signals of rapid evolutionary change, with pronounced frequency shifts between historic and modern populations. Our results provide compelling genome-wide evidence that copy number variation underlies rapid adaptation over contemporary timescales of natural populations.
1

Adaptive introgression and standing genetic variation, two facilitators of adaptation to high latitudes in European aspen (Populus tremula L.)

Martha Rendón‐Anaya et al.Feb 24, 2021
Abstract Understanding local adaptation in plants from a genomic perspective has become a key research area given the ongoing climate challenge and the concomitant requirement to conserve genetic resources. Perennial plants, such as forest trees, are good models to study local adaptation given their wide geographic distribution, largely outcrossing mating systems and demographic histories. We evaluated signatures of local adaptation in European aspen ( Populus tremula ) across Europe by means of whole genome re-sequencing of a collection of 411 individual trees. We dissected admixture patterns between aspen lineages and observed a strong genomic mosaicism in Scandinavian trees, evidencing different colonization trajectories into the peninsula from Russia, Central and Western Europe. As a consequence of the secondary contacts between populations after the last glacial maximum (LGM), we detected an adaptive introgression event in a genome region of ∼500kb in chromosome 10, harboring a large-effect locus that has previously been shown to contribute to adaptation to the short growing seasons characteristic of northern Scandinavia. Demographic simulations and ancestry inference suggest an Eastern origin - probably Russian - of the adaptive Nordic allele which nowadays is present in a homozygous state at the north of Scandinavia. The strength of introgression and positive selection signatures in this region is a unique feature in the genome. Furthermore, we detected signals of balancing selection, shared across regional populations, that highlight the importance of standing variation as a primary source of alleles that facilitate local adaptation. Our results therefore emphasize the importance of migration-selection balance underlying the genetic architecture of key adaptive quantitative traits.
0

Rapid Parallel Adaptation in Distinct Invasions of Ambrosia Artemisiifolia Is Driven by Large-Effect Structural Variants

Paul Battlay et al.Jan 1, 2025
Abstract When introduced to multiple distinct ranges, invasive species provide a compelling natural experiment for understanding the repeatability of adaptation. Ambrosia artemisiifolia is an invasive, noxious weed, and chief cause of hay fever. Leveraging over 400 whole-genome sequences spanning the native-range in North America and 2 invasions in Europe and Australia, we inferred demographically distinct invasion histories on each continent. Despite substantial differences in genetic source and effective population size changes during introduction, scans of both local climate adaptation and divergence from the native-range revealed genomic signatures of parallel adaptation between invasions. Disproportionately represented among these parallel signatures are 37 large haploblocks—indicators of structural variation—that cover almost 20% of the genome and exist as standing genetic variation in the native-range. Many of these haploblocks are associated with traits important for adaptation to local climate, like size and the timing of flowering, and have rapidly reformed native-range clines in invaded ranges. Others show extreme frequency divergence between ranges, consistent with a response to divergent selection on different continents. Our results demonstrate the key role of large-effect standing variants in rapid adaptation during range expansion, a pattern that is robust to diverse invasion histories.