AL
Antonio Luque‐Casado
Author with expertise in Analysis and Applications of Heart Rate Variability
Achievements
Cited Author
Key Stats
Upvotes received:
0
Publications:
5
(20% Open Access)
Cited by:
194
h-index:
14
/
i10-index:
20
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
21

An umbrella review of randomized control trials on the effects of physical exercise on cognition

Luís Ciria et al.Feb 17, 2022
Abstract Extensive research links regular physical exercise to an overall enhancement of cognitive function across the lifespan. Here, we assess the causal evidence supporting this relationship in the healthy population, using an umbrella review of meta-analyses limited to randomized controlled trials (RCTs). Despite most of the 24 reviewed meta-analyses reporting a positive overall effect, our assessment reveals evidence of low statistical power in the primary RCTs, selective inclusion of studies, publication bias, and large variation in combinations of preprocessing and analytic decisions. In addition, our meta-analysis of all the primary RCTs included in the revised meta-analyses shows small exercise-related benefits ( d = 0.22, 95% CI [0.16, 0.28]) that became substantially smaller after accounting for key moderators (i.e., active control and baseline differences; d = 0.13, 95% CI [0.07, 0.20), and negligible after correcting for publication bias ( d = 0.05, 95% CrI [−0.09, 0.14]). These findings suggest caution in claims and recommendations linking regular physical exercise to cognitive benefits in the healthy human population until more reliable causal evidence accumulates.
0

Physical exercise increases overall brain oscillatory activity but does not influence inhibitory control in young adults

Luís Ciria et al.Feb 22, 2018
Extant evidence suggests that acute exercise triggers a tonic power increase in the alpha frequency band at frontal locations, which has been linked to benefits in cognitive function. However, recent literature has questioned such a selective effect on a particular frequency band, indicating a rather overall power increase across the entire frequency spectrum. Moreover, the nature of task-evoked oscillatory brain activity associated to inhibitory control after exercising, and the duration of the exercise effect, are not yet clear. Here, we investigate for the first time steady state oscillatory brain activity during and following an acute bout of aerobic exercise at two different exercise intensities (moderate-to-high and light), by means of a data-driven cluster-based approach to describe the spatio-temporal distribution of exercise-induced effects on brain function without prior assumptions on any frequency range or site of interest. We also assess the transient oscillatory brain activity elicited by stimulus presentation, as well as behavioural performance, in two inhibitory control (flanker) tasks, one performed after a short delay following the physical exercise and another completed after a rest period of 15 minutes post-exercise to explore the time course of exercise-induced changes on brain function and cognitive performance. The results show that oscillatory brain activity increases during exercise compared to the resting state, and that this increase is higher during the moderate-to-high intensity exercise with respect to the light intensity exercise. In addition, our results show that the global pattern of increased oscillatory brain activity is not specific to any concrete surface localization in slow frequencies, while in faster frequencies this effect is located in parieto-occipital sites. Notably, the exercise-induced increase in oscillatory brain activity disappears immediately after the end of the exercise bout. Neither transient (event-related) oscillatory activity, nor behavioral performance during the flanker tasks following exercise showed significant between-intensity differences. The present findings help elucidate the effect of physical exercise on oscillatory brain activity and challenge previous research suggesting improved inhibitory control following moderate-to-high acute exercise.
0

Tonic and transient oscillatory brain activity during acute exercise

Luís Ciria et al.Oct 11, 2017
The physiological changes that occur in the main body systems and organs during physical exercise are well described in the literature. Despite the key role of brain in processing afferent and efferent information from organ systems to coordinate and optimize their functioning, little is known about how the brain works during exercise. The present study investigated tonic and transient oscillatory brain activity during a single bout of aerobic exercise. Twenty young males (19-32 years old) were recruited for two experimental sessions on separate days. Electroencephalographic (EEG) activity was recorded during a session of cycling at 80% (moderate-to-high intensity) of VO2max (maximum aerobic capacity) while performing an oddball task where participants had to detect infrequent targets presented among frequent non-targets. This was compared to a (baseline) light intensity session (30% VO2max). The light intensity session was included to control for any potential effect of dual-tasking (i.e., pedaling and performing the oddball task). A warm-up and cool down periods were completed before and after exercise, respectively. A cluster-based nonparametric permutations test showed an increase in power across the entire frequency spectrum during the moderate-to-high intensity exercise, with respect to light intensity. Further, we found that the more salient target lead to lower increase in (stimulus-evoked) theta power in the 80% VO2max with respect to the light intensity condition. On the contrary, higher decrease alpha and lower beta power was found for standard trials in the moderate-to-high exercise condition than in the light exercise condition. The present study unveils, for the first time, a complex brain activity pattern during acute exercise (at 80% of maximum aerobic capacity). These findings might help to elucidate the nature of changes that occur in the brain during physical exertion.
0

Neural Responses to Heartbeats of Physically Trained and Sedentary Young Adults

Pandelis Perakakis et al.Jun 28, 2017
Regular physical exercise has a positive impact on brain function and cognitive performance. However, it is not yet clear whether the physiological and behavioral benefits associated to physical exercise are caused exclusively by changes in cardiovascular fitness. Here, we explore the relation between regular physical exercise and transient electroencephalographic responses to afferent cardiac signals. We find differences in the neural processing of heartbeats between individuals who exercise regularly and their sedentary counterparts. These differences, localised at two distinct spatio-temporal clusters, occur before the presentation of a target stimulus and correlate with behavioral performance only in the high-fit group. We hypothesise that the different neural processing of afferent cardiac activity by physically trained individuals reflects enhanced interoceptive sensitivity, which contributes to improved sustained attention. Our results are in line with recent research highlighting the role of neural monitoring of visceral signals in perceptual processing and even the generation of the sense of self.