TB
Taylor Barongan
Author with expertise in Role of Autophagy in Disease and Health
Achievements
Open Access Advocate
Cited Author
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
12
h-index:
7
/
i10-index:
3
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

Three-Dimensional Mitochondria Reconstructions of Murine Cardiac Muscle Changes in Size Across Aging

Zer Vue et al.Apr 24, 2022
ABSTRACT With sparse treatment options, cardiac disease remains a significant cause of death among humans. As a person ages, mitochondria break down and the heart becomes less efficient. Heart failure is linked to many mitochondria-associated processes, including endoplasmic reticulum stress, mitochondrial bioenergetics, insulin signaling, autophagy, and oxidative stress. The roles of key mitochondrial complexes that dictate the ultrastructure, such as the mitochondrial contact site and cristae organizing system (MICOS), in aging cardiac muscle are poorly understood. To better understand the cause of age-related alteration in mitochondrial structure in cardiac muscle, we used transmission electron microscopy (TEM) and serial block facing-scanning electron microscopy (SBF-SEM) to quantitatively analyze the 3D networks in cardiac muscle samples of male mice at aging intervals of 3 months, 1 year, and 2 years. Here, we present the loss of cristae morphology, the inner folds of the mitochondria, across age. In conjunction with this, the 3D volume of mitochondria decreased. These findings mimicked observed phenotypes in murine cardiac fibroblasts with CRISPR/Cas9 knockout of Mitofilin, Chchd3, Chchd6 (some members of the MICOS complex), and Opa1 , which showed poorer oxidative consumption rate and mitochondria with decreased mitochondrial length and volume. In combination, these data show the need to explore if loss of the MICOS complex in the heart may be involved in age-associated mitochondrial and cristae structural changes.
1
Citation6
0
Save
8

Systematic Transmission Electron Microscopy-Based Identification and 3D Reconstruction of Cellular Degradation Machinery

Kit Neikirk et al.Sep 27, 2021
Abstract Many interconnected degradation machineries including autophagosomes, lysosomes, and endosomes work in tandem to conduct autophagy, an intracellular degradation system that is crucial for cellular homeostasis. Altered autophagy contributes to the pathophysiology of various diseases, including cancers and metabolic diseases. Although many studies have investigated autophagy to elucidate disease pathogenesis, identification of specific components of the autophagy machinery has been challenging. The goal of this paper is to describe an approach to reproducibly identify and distinguish subcellular structures involved in macro autophagy. We provide methods that help avoid common pitfalls, including a detailed explanation for distinguishing lysosomes and lipid droplets and discuss differences between autophagosomes and inclusion bodies. These methods are based on using transmission electron microscopy (TEM), capable of generating nanometer-scale micrographs of cellular degradation components in a fixed sample. We also utilize serial block face-scanning electron microscopy (SBF-SEM) to offer a protocol for visualizing 3D morphology of degradation machinery. In addition to TEM and 3D reconstruction, we discuss other imaging techniques, such as immunofluorescence and immunogold labeling that can be utilized to reliably and accurately classify cellular organelles. Our results show how these methods may be used to accurately quantify the cellular degradation machinery under various conditions, such as treatment with the endoplasmic reticulum stressor thapsigargin or ablation of the dynamin-related protein 1.
8
Citation4
0
Save
1

Alterations in Cardiovascular and Cerebral Pulse Wave Velocity in 5XFAD Murine Model of Alzheimer’s Disease

Andrea Marshall et al.Jun 25, 2023
Abstract Alzheimer’s Disease (AD) is a global health issue, affecting over 6 million in the United States, with that number expected to increase as the aging population grows. As a neurodegenerative disorder that affects memory and cognitive functions, it is well established that AD is associated with cardiovascular risk factors beyond only cerebral decline. However, the study of cerebrovascular techniques for AD is still evolving. Here, we provide reproducible methods to measure impedance-based pulse wave velocity (PWV), a marker of arterial stiffness, in the systemic vascular (aortic PWV) and in the cerebral vascular (cerebral PWV) systems. Using aortic impedance and this relatively novel technique of cerebral impedance to comprehensively describe the systemic vascular and the cerebral vascular systems, we examined the sex-dependent differences in 5x transgenic mice (5XFAD) with AD under normal and high-fat diet, and in wild-type mice under a normal diet. Additionally, we validated our method for measuring cerebrovascular impedance in a model of induced stress in 5XFAD. Together, our results show that sex and diet differences in wildtype and 5XFAD mice account for very minimal differences in cerebral impedance. Interestingly, 5XFAD, and not wildtype, male mice on a chow diet show higher cerebral impedance, suggesting pathological differences. Opposingly, when we subjected 5XFAD mice to stress, we found that females showed elevated cerebral impedance. Using this validated method of measuring impedance-based aortic and cerebral PWV, future research may explore the effects of modifying factors including age, chronic diet, and acute stress, which may mediate cardiovascular risk in AD. New and Noteworthy Here, we presented a new technique which is an application of the concept of aortic impedance to determining cerebral impedance. While aortic PWV is typically utilized to study aortic stiffness, we also developed a technique of cerebral PWV to study cerebral vascular stiffness. This method may be useful in improving the rigor of studies that seek to have a dual focus on cardiovascular and cerebral function.
1
Citation1
0
Save
17

Cardiovascular Hemodynamics in Mice with Tumor Necrosis Factor Receptor - Associated Factor 2 Mediated Cytoprotection in the Heart

Andrea Marshall et al.Sep 6, 2022
Abstract Many studies in mice have demonstrated that cardiac-specific innate immune signaling pathways can be reprogrammed to modulate inflammation in response to myocardial injury and improve outcomes. While the echocardiography standard parameters of left ventricular (LV) ejection fraction, fractional shortening, and end-diastolic diameter, and others, are used to assess cardiac function, their dependency on loading conditions somewhat limit their utility in completely reflecting the contractile function and global cardiovascular efficiency of the heart. A true measure of global cardiovascular efficiency should include of the interaction between the ventricle and the aorta (ventriculo-vascular coupling, VVC) as well as measures of aortic impedance and pulse wave velocity. We measured cardiac Doppler velocities, blood pressures, along with VVC, aortic impedance, and pulse wave velocity to evaluate global cardiac function in mouse model of cardiac-restricted low levels TRAF2 overexpression that conferred cytoprotection in the heart. While previous studies reported that response to myocardial infraction and reperfusion was improved in the TRAF2 overexpressed mice, we found that TRAF2 mice had significantly lower cardiac systolic velocities and accelerations, diastolic atrial velocity, lower aortic pressures and rate-pressure product, lower LV contractility and relaxation, and lower stroke work when compared to littermate control mice. Also, we found significantly longer aortic ejection time, isovolumic contraction and relaxation times, and significantly higher mitral early/atrial ratio, myocardial performance index, and ventricular vascular coupling in the TRAF2 overexpression mice compared to their littermate controls. We found no significant differences in the aortic impedance and pulse wave velocity. While the reported tolerance to ischemic insults in TRAF2 overexpression mice may suggest enhanced cardiac reserve, our results indicate a diminished cardiac function in these mice.