JR
Joseph Receveur
Author with expertise in Role of Microglia in Neurological Disorders
Achievements
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
4
(100% Open Access)
Cited by:
9
h-index:
9
/
i10-index:
8
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
1

The BRAIN Initiative Cell Census Network Data Ecosystem: A User’s Guide

Michael Hawrylycz et al.Oct 30, 2022
Abstract Characterizing cellular diversity at different levels of biological organization across data modalities is a prerequisite to understanding the function of cell types in the brain. Classification of neurons is also required to manipulate cell types in controlled ways, and to understand their variation and vulnerability in brain disorders. The BRAIN Initiative Cell Census Network (BICCN) is an integrated network of data generating centers, data archives and data standards developers, with the goal of systematic multimodal brain cell type profiling and characterization. Emphasis of the BICCN is on the whole mouse brain and demonstration of prototypes for human and non-human primate (NHP) brains. Here, we provide a guide to the cellular and spatial approaches employed, and to accessing and using the BICCN data and its extensive resources, including the BRAIN Cell Data Center (BCDC) which serves to manage and integrate data across the ecosystem. We illustrate the power of the BICCN data ecosystem through vignettes highlighting several BICCN analysis and visualization tools. Finally, we present emerging standards that have been developed or adopted by the BICCN toward FAIR (Wilkinson et al. 2016a) neuroscience. The combined BICCN ecosystem provides a comprehensive resource for the exploration and analysis of cell types in the brain.
1
Citation7
0
Save
0

The single-cell opioid responses in the context of HIV (SCORCH) consortium

Seth Ament et al.Jun 15, 2024
Abstract Substance use disorders (SUD) and drug addiction are major threats to public health, impacting not only the millions of individuals struggling with SUD, but also surrounding families and communities. One of the seminal challenges in treating and studying addiction in human populations is the high prevalence of co-morbid conditions, including an increased risk of contracting a human immunodeficiency virus (HIV) infection. Of the ~15 million people who inject drugs globally, 17% are persons with HIV. Conversely, HIV is a risk factor for SUD because chronic pain syndromes, often encountered in persons with HIV, can lead to an increased use of opioid pain medications that in turn can increase the risk for opioid addiction. We hypothesize that SUD and HIV exert shared effects on brain cell types, including adaptations related to neuroplasticity, neurodegeneration, and neuroinflammation. Basic research is needed to refine our understanding of these affected cell types and adaptations. Studying the effects of SUD in the context of HIV at the single-cell level represents a compelling strategy to understand the reciprocal interactions among both conditions, made feasible by the availability of large, extensively-phenotyped human brain tissue collections that have been amassed by the Neuro-HIV research community. In addition, sophisticated animal models that have been developed for both conditions provide a means to precisely evaluate specific exposures and stages of disease. We propose that single-cell genomics is a uniquely powerful technology to characterize the effects of SUD and HIV in the brain, integrating data from human cohorts and animal models. We have formed the Single-Cell Opioid Responses in the Context of HIV (SCORCH) consortium to carry out this strategy.
0
Citation1
0
Save
1

Desiccation resistance differences in Drosophila species can be largely explained by variations in cuticular hydrocarbons

Zinan Wang et al.Jun 28, 2022
Abstract Maintaining water balance is a universal challenge for organisms living in terrestrial environments, especially for insects, which have essential roles in our ecosystem. Although the high surface area to volume ratio in insects makes them vulnerable to water loss, insects have evolved different levels of desiccation resistance to adapt to diverse environments. To withstand desiccation, insects use a lipid layer called cuticular hydrocarbons (CHCs) to reduce water evaporation from the body surface. It has long been hypothesized that the waterproofing capability of this CHC layer, which can confer different levels of desiccation resistance, depends on its chemical composition. However, it is unknown which CHC components are important contributors to desiccation resistance and how these components can determine differences in desiccation resistance. In this study, we used machine learning algorithms, correlation analyses, and synthetic CHCs to investigate how different CHC components affect desiccation resistance in 50 Drosophila and related species. We showed that desiccation resistance differences across these species can be largely explained by variation in cuticular hydrocarbons. In particular, length variation in a subset of CHCs, the methyl-branched CHCs (mbCHCs), is a key determinant of desiccation resistance. We also showed a significant correlation between the evolution of longer mbCHCs and higher desiccation resistance. Given the ubiquitous presence of mbCHCs in insects, the evolution of mbCHCs may be a general mechanism of how insects evolve desiccation resistance and adapt to diverse and changing environments. Significance As our planet is becoming more arid due to global warming, preventing dehydration is key to the survival of insects, an essential part of our ecosystem. However, factors that determine how insects may evolve resistance to desiccation are relatively unknown. Using Drosophila species from diverse habitats, we showed that variations in the composition of cuticular hydrocarbons (CHCs), a hydrophobic layer found on insects to prevent evaporative water loss, can largely explain desiccation resistance differences. In addition, the evolution of longer methyl-branched CHCs (mbCHCs), underlies the evolution of higher desiccation resistance in this genus. As mbCHCs are ubiquitously present in most insects, we suggest that evolutionary changes in mbCHCs may be a general determinant of desiccation resistance across insect species.
1
Citation1
0
Save
1

The Neuroscience Multi-Omic Archive: A BRAIN Initiative resource for single-cell transcriptomic and epigenomic data from the mammalian brain

Seth Ament et al.Sep 9, 2022
ABSTRACT Scalable technologies to sequence the transcriptomes and epigenomes of single cells are transforming our understanding of cell types and cell states. The Brain Research through Advancing Innovative Neurotechnologies (BRAIN) Initiative Cell Census Network (BICCN) is applying these technologies at unprecedented scale to map the cell types in the mammalian brain. In an effort to increase data FAIRness (Findable, Accessible, Interoperable, Reusable), the NIH has established repositories to make data generated by the BICCN and related BRAIN Initiative projects accessible to the broader research community. Here, we describe the Neuroscience Multi-Omic Archive (NeMO Archive; nemoarchive.org ), which serves as the primary repository for genomics data from the BRAIN Initiative. Working closely with other BRAIN Initiative researchers, we have organized these data into a continually expanding, curated repository, which contains transcriptomic and epigenomic data from over 50 million brain cells, including single-cell genomic data from all of the major regions of the adult and prenatal human and mouse brains, as well as substantial single-cell genomic data from non-human primates. We make available several tools for accessing these data, including a searchable web portal, a cloud-computing interface for large-scale data processing (implemented on Terra, terra.bio ), and a visualization and analysis platform, NeMO Analytics ( nemoanalytics.org ). KEY POINTS The Neuroscience Multi-Omic Archive serves as the genomics data repository for the BRAIN Initiative. Genomic data from >50 million cells span all the major regions of the brains of humans and mice. We provide a searchable web portal, a cloud-computing interface, and a data visualization platform.