MF
Mayra Furlan-Magaril
Author with expertise in Regulation of Chromatin Structure and Function
Achievements
Cited Author
Open Access Advocate
Key Stats
Upvotes received:
0
Publications:
12
(83% Open Access)
Cited by:
1,613
h-index:
21
/
i10-index:
23
Reputation
Biology
< 1%
Chemistry
< 1%
Economics
< 1%
Show more
How is this calculated?
Publications
0

The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements

Stefan Schoenfelder et al.Mar 9, 2015
The mammalian genome harbors up to one million regulatory elements often located at great distances from their target genes. Long-range elements control genes through physical contact with promoters and can be recognized by the presence of specific histone modifications and transcription factor binding. Linking regulatory elements to specific promoters genome-wide is currently impeded by the limited resolution of high-throughput chromatin interaction assays. Here we apply a sequence capture approach to enrich Hi-C libraries for >22,000 annotated mouse promoters to identify statistically significant, long-range interactions at restriction fragment resolution, assigning long-range interacting elements to their target genes genome-wide in embryonic stem cells and fetal liver cells. The distal sites contacting active genes are enriched in active histone modifications and transcription factor occupancy, whereas inactive genes contact distal sites with repressive histone marks, demonstrating the regulatory potential of the distal elements identified. Furthermore, we find that coregulated genes cluster nonrandomly in spatial interaction networks correlated with their biological function and expression level. Interestingly, we find the strongest gene clustering in ES cells between transcription factor genes that control key developmental processes in embryogenesis. The results provide the first genome-wide catalog linking gene promoters to their long-range interacting elements and highlight the complex spatial regulatory circuitry controlling mammalian gene expression.
0
Citation428
0
Save
0

Polycomb repressive complex PRC1 spatially constrains the mouse embryonic stem cell genome

Stefan Schoenfelder et al.Aug 31, 2015
Sarah Elderkin and colleagues show that PRC1 acts as a master regulator of genome architecture in mouse embryonic stem cells by organizing genes in three-dimensional interaction networks. They find that the strongest spatial network is composed of the four Hox clusters and key early developmental transcription factor genes, and they propose that selective release of genes from this spatial network underlies cell fate specification during embryonic development. The Polycomb repressive complexes PRC1 and PRC2 maintain embryonic stem cell (ESC) pluripotency by silencing lineage-specifying developmental regulator genes1. Emerging evidence suggests that Polycomb complexes act through controlling spatial genome organization2,3,4,5,6,7,8,9. We show that PRC1 functions as a master regulator of mouse ESC genome architecture by organizing genes in three-dimensional interaction networks. The strongest spatial network is composed of the four Hox gene clusters and early developmental transcription factor genes, the majority of which contact poised enhancers. Removal of Polycomb repression leads to disruption of promoter-promoter contacts in the Hox gene network. In contrast, promoter-enhancer contacts are maintained in the absence of Polycomb repression, with accompanying widespread acquisition of active chromatin signatures at network enhancers and pronounced transcriptional upregulation of network genes. Thus, PRC1 physically constrains developmental transcription factor genes and their enhancers in a silenced but poised spatial network. We propose that the selective release of genes from this spatial network underlies cell fate specification during early embryonic development.
0
Citation358
0
Save
44

RNA polymerase II pausing contributes to maintain chromatin organization in erythrocytes

P. Andrés et al.Jun 16, 2022
Abstract Chicken erythrocytes are nucleated cells often referred to as transcriptionally inactive, although the epigenetic changes and chromatin remodeling that mediate transcriptional repression and the extent of gene silencing during avian terminal erythroid differentiation are not fully understood. Here we characterized the changes in gene expression, chromatin accessibility, genome organization, and chromatin nuclear disposition during the terminal stages of erythropoiesis in chicken and found a complex chromatin reorganization at different genomic scales. We identified a robust decrease in transcription in erythrocytes. Nevertheless, a set of genes maintains their expression in erythrocytes, including genes involved in RNA pol II promoter-proximal pausing. Erythrocytes exhibit an inverted nuclear architecture and reposition euchromatin towards the nuclear periphery together with the paused RNA polymerase. In erythrocytes, chromatin domains are partially lost genome-wide except at mini domains retained around paused promoters. Our results suggest that promoter-proximal pausing of the RNA pol II participates in the transcriptional regulation of the erythroid genome and highlight the role of RNA polymerase in the maintenance of local chromatin organization.
44
Citation3
0
Save
66

The global and promoter-centric 3D genome organization temporally resolved during a circadian cycle

Masami Ando‐Kuri et al.Jul 24, 2020
Summary Circadian gene expression is essential for organisms to adjust cellular responses and anticipate daily changes in the environment. In addition to its physiological importance, the clock circuit represents an ideal, temporally resolved, system to study transcription regulation. Here, we analysed changes in spatial mouse liver chromatin conformation using genome-wide and promoter-capture Hi-C alongside daily oscillations in gene transcription in mouse liver. We found circadian topologically associated domains switched assignments to the transcriptionally active, open chromatin compartment and the inactive compartment at different hours of the day while their boundaries stably maintain their structure over time. Individual circadian gene promoters displayed maximal chromatin contacts at times of peak transcriptional output and the expression of circadian genes and contacted transcribed regulatory elements, or other circadian genes, was phase-coherent. Anchor sites of promoter chromatin loops were enriched in binding sites for liver nuclear receptors and transcription factors, some exclusively present in either rhythmic or stable contacts. The circadian 3D chromatin maps provided here identify the scales of chromatin conformation that parallel oscillatory gene expression and protein factors specifically associated with circadian or stable chromatin configurations.
66
Citation1
0
Save
0

Gene expression dynamics during temperature-dependent sex determination in a sea turtle

Mónica Martínez-Pacheco et al.Jun 22, 2024
Fifty years ago, researchers discovered a link between ambient temperature and the sex of turtle embryos. More recently, significant progress has been made in understanding the influence of temperature on freshwater turtles. However, our understanding of the key genetic factors in other turtle groups, such as sea turtles, remains limited. To address this gap, we conducted RNA-seq analyses on embryonic tissues from the sea olive ridley turtle during the thermosensitive period (stages 21-26) at temperatures known to produce males (26°C) and females (33°C). Our findings revealed that incubation temperatures primarily influence genes with broad expression across tissues due to differential cell division rates and later have an effect regulating gonad-specific transcripts. This effect is mostly related to gene activation rather than transcription repression. We performed transcriptome analyses following shifts in incubation temperatures of bi-potential gonads. This approach allowed us to identify genes that respond rapidly and may be closer to the beginning of the temperature-sensing pathway. Notably, we observed swift adaptations in the expression levels of chromatin modifiers JARID2 and KDM6B, as well as the splicing factor SRSF5, and transcription regulators THOC2, DDX3X and CBX3, but little impact in the overall gonad-specific pathways, indicating that temperature-sensing genes may change rapidly but the rewiring of the gonad's developmental fate is complex and resilient. Sea turtles, one of the most iconic creatures of our oceans, confront a troubling reality of endangerment, a peril magnified by the looming specter of climate change. This climatic shift is gradually increasing the temperature of the nesting beaches thus causing dramatic male/female population biases. Conservation efforts will need genetic and molecular information to reverse the negative effects of climate change on the populations. In this study, we conducted the first transcriptomic analysis of embryonic tissues, including gonads, brain, liver, and mesonephros, in the olive ridley sea turtle during the critical thermosensitive period spanning stages 21-26. We examined both male-producing (26°C) and female-producing (33°C) temperatures and found that incubation temperatures influence temperature-sensitive genes that are either expressed globally or specifically associated with the gonads. These findings indicate that incubation temperatures predominantly sway genes with broad expression patterns due to differential cell division rates. This natural process was opted in the gonads to drive sex determination. We also identified genes that are rapidly capable of sensing temperature changes and that could play a role in the activation of the sex determination pathway. Overall, our study sheds light on the intricate interplay between temperature and gene expression during sea turtle development, revealing dynamic changes in the transcriptome and highlighting the involvement of key genetic players in sex determination.
Load More